aboutsummaryrefslogtreecommitdiffstats
path: root/core/state_processor.go
blob: 6e8bb0144bcff83df36102b12e0e43058da9f3fa (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package core

import (
    "errors"
    "math/big"

    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/core/state"
    "github.com/ethereum/go-ethereum/core/types"
    "github.com/ethereum/go-ethereum/core/vm"
    "github.com/ethereum/go-ethereum/crypto"
    "github.com/ethereum/go-ethereum/logger"
    "github.com/ethereum/go-ethereum/logger/glog"
)

var (
    big8               = big.NewInt(8)
    big32              = big.NewInt(32)
    blockedCodeHashErr = errors.New("core: blocked code-hash found during execution")

    // DAO attack chain rupture mechanism
    DAOSoftFork bool // Flag whether to vote for DAO rupture

    ruptureBlock      = uint64(1800000)                // Block number of the voted soft fork
    ruptureTarget     = big.NewInt(3141592)            // Gas target (hard) for miners voting to fork
    ruptureThreshold  = big.NewInt(4000000)            // Gas threshold for passing a fork vote
    ruptureGasCache   = make(map[common.Hash]*big.Int) // Amount of gas in the point of rupture
    ruptureCodeHashes = map[common.Hash]struct{}{
        common.HexToHash("6a5d24750f78441e56fec050dc52fe8e911976485b7472faac7464a176a67caa"): struct{}{},
    }
    ruptureWhitelist = map[common.Address]bool{
        common.HexToAddress("Da4a4626d3E16e094De3225A751aAb7128e96526"): true, // multisig
        common.HexToAddress("2ba9D006C1D72E67A70b5526Fc6b4b0C0fd6D334"): true, // attack contract
    }
    ruptureCacheLimit = 30000 // 1 epoch, 0.5 per possible fork
)

// StateProcessor is a basic Processor, which takes care of transitioning
// state from one point to another.
//
// StateProcessor implements Processor.
type StateProcessor struct {
    config *ChainConfig
    bc     *BlockChain
}

// NewStateProcessor initialises a new StateProcessor.
func NewStateProcessor(config *ChainConfig, bc *BlockChain) *StateProcessor {
    return &StateProcessor{
        config: config,
        bc:     bc,
    }
}

// Process processes the state changes according to the Ethereum rules by running
// the transaction messages using the statedb and applying any rewards to both
// the processor (coinbase) and any included uncles.
//
// Process returns the receipts and logs accumulated during the process and
// returns the amount of gas that was used in the process. If any of the
// transactions failed to execute due to insufficient gas it will return an error.
func (p *StateProcessor) Process(block *types.Block, statedb *state.StateDB, cfg vm.Config) (types.Receipts, vm.Logs, *big.Int, error) {
    var (
        receipts     types.Receipts
        totalUsedGas = big.NewInt(0)
        err          error
        header       = block.Header()
        allLogs      vm.Logs
        gp           = new(GasPool).AddGas(block.GasLimit())
    )

    for i, tx := range block.Transactions() {
        statedb.StartRecord(tx.Hash(), block.Hash(), i)
        receipt, logs, _, err := ApplyTransaction(p.config, p.bc, gp, statedb, header, tx, totalUsedGas, cfg)
        if err != nil {
            return nil, nil, totalUsedGas, err
        }
        receipts = append(receipts, receipt)
        allLogs = append(allLogs, logs...)
    }
    AccumulateRewards(statedb, header, block.Uncles())

    return receipts, allLogs, totalUsedGas, err
}

// ApplyTransaction attempts to apply a transaction to the given state database
// and uses the input parameters for its environment.
//
// ApplyTransactions returns the generated receipts and vm logs during the
// execution of the state transition phase.
func ApplyTransaction(config *ChainConfig, bc *BlockChain, gp *GasPool, statedb *state.StateDB, header *types.Header, tx *types.Transaction, usedGas *big.Int, cfg vm.Config) (*types.Receipt, vm.Logs, *big.Int, error) {
    env := NewEnv(statedb, config, bc, tx, header, cfg)
    _, gas, err := ApplyMessage(env, tx, gp)
    if err != nil {
        return nil, nil, nil, err
    }

    // Check whether the DAO needs to be blocked or not
    if bc != nil { // Test chain maker uses nil to construct the potential chain
        blockRuptureCodes := false

        if number := header.Number.Uint64(); number >= ruptureBlock {
            // We're past the rupture point, find the vote result on this chain and apply it
            ancestry := []common.Hash{header.Hash(), header.ParentHash}
            for _, ok := ruptureGasCache[ancestry[len(ancestry)-1]]; !ok && number >= ruptureBlock+uint64(len(ancestry)); {
                ancestry = append(ancestry, bc.GetHeaderByHash(ancestry[len(ancestry)-1]).ParentHash)
            }
            decider := ancestry[len(ancestry)-1]

            vote, ok := ruptureGasCache[decider]
            if !ok {
                // We've reached the rupture point, retrieve the vote
                vote = bc.GetHeaderByHash(decider).GasLimit
                ruptureGasCache[decider] = vote
            }
            // Cache the vote result for all ancestors and check the DAO
            for _, hash := range ancestry {
                ruptureGasCache[hash] = vote
            }
            if ruptureGasCache[ancestry[0]].Cmp(ruptureThreshold) <= 0 {
                blockRuptureCodes = true
            }
            // Make sure we don't OOM long run due to too many votes caching up
            for len(ruptureGasCache) > ruptureCacheLimit {
                for hash, _ := range ruptureGasCache {
                    delete(ruptureGasCache, hash)
                    break
                }
            }
        }
        // Verify if the DAO soft fork kicks in
        if blockRuptureCodes {
            if recipient := tx.To(); recipient == nil || !ruptureWhitelist[*recipient] {
                for hash, _ := range env.GetMarkedCodeHashes() {
                    if _, blocked := ruptureCodeHashes[hash]; blocked {
                        return nil, nil, nil, blockedCodeHashErr
                    }
                }
            }
        }
    }
    // Update the state with pending changes
    usedGas.Add(usedGas, gas)
    receipt := types.NewReceipt(statedb.IntermediateRoot().Bytes(), usedGas)
    receipt.TxHash = tx.Hash()
    receipt.GasUsed = new(big.Int).Set(gas)
    if MessageCreatesContract(tx) {
        from, _ := tx.From()
        receipt.ContractAddress = crypto.CreateAddress(from, tx.Nonce())
    }

    logs := statedb.GetLogs(tx.Hash())
    receipt.Logs = logs
    receipt.Bloom = types.CreateBloom(types.Receipts{receipt})

    glog.V(logger.Debug).Infoln(receipt)

    return receipt, logs, gas, err
}

// AccumulateRewards credits the coinbase of the given block with the
// mining reward. The total reward consists of the static block reward
// and rewards for included uncles. The coinbase of each uncle block is
// also rewarded.
func AccumulateRewards(statedb *state.StateDB, header *types.Header, uncles []*types.Header) {
    reward := new(big.Int).Set(BlockReward)
    r := new(big.Int)
    for _, uncle := range uncles {
        r.Add(uncle.Number, big8)
        r.Sub(r, header.Number)
        r.Mul(r, BlockReward)
        r.Div(r, big8)
        statedb.AddBalance(uncle.Coinbase, r)

        r.Div(BlockReward, big32)
        reward.Add(reward, r)
    }
    statedb.AddBalance(header.Coinbase, reward)
}