aboutsummaryrefslogtreecommitdiffstats
path: root/dex/sync.go
blob: 1e35faf21fa9faabebb65c8f3df7bf92a8f98245 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package dex

import (
    "math/rand"
    "sync/atomic"
    "time"

    "github.com/dexon-foundation/dexon/common"
    "github.com/dexon-foundation/dexon/core/types"
    "github.com/dexon-foundation/dexon/dex/downloader"
    "github.com/dexon-foundation/dexon/log"
    "github.com/dexon-foundation/dexon/p2p/enode"
)

const (
    forceSyncCycle      = 10 * time.Second // Time interval to force syncs, even if few peers are available
    minDesiredPeerCount = 5                // Amount of peers desired to start syncing

    // The distance between us and peer that we can accept.
    // This distance is related to numChains and lambdaBA dexcon config.
    acceptableDist = 16

    // This is the target size for the packs of transactions sent by txsyncLoop.
    // A pack can get larger than this if a single transactions exceeds this size.
    txsyncPackSize = 100 * 1024

    // This is the target number for the packs of metas sent by metasyncLoop.
    metasyncPackNum = 1024
)

type txsync struct {
    p   *peer
    txs []*types.Transaction
}

// syncTransactions starts sending all currently pending transactions to the given peer.
func (pm *ProtocolManager) syncTransactions(p *peer) {
    var txs types.Transactions
    pending, _ := pm.txpool.Pending()
    for _, batch := range pending {
        txs = append(txs, batch...)
    }
    if len(txs) == 0 {
        return
    }
    select {
    case pm.txsyncCh <- &txsync{p, txs}:
    case <-pm.quitSync:
    }
}

// txsyncLoop takes care of the initial transaction sync for each new
// connection. When a new peer appears, we relay all currently pending
// transactions. In order to minimise egress bandwidth usage, we send
// the transactions in small packs to one peer at a time.
func (pm *ProtocolManager) txsyncLoop() {
    var (
        pending = make(map[enode.ID]*txsync)
        sending = false               // whether a send is active
        pack    = new(txsync)         // the pack that is being sent
        done    = make(chan error, 1) // result of the send
    )

    // send starts a sending a pack of transactions from the sync.
    send := func(s *txsync) {
        // Fill pack with transactions up to the target size.
        size := common.StorageSize(0)
        pack.p = s.p
        pack.txs = pack.txs[:0]
        for i := 0; i < len(s.txs) && size < txsyncPackSize; i++ {
            pack.txs = append(pack.txs, s.txs[i])
            size += s.txs[i].Size()
        }
        // Remove the transactions that will be sent.
        s.txs = s.txs[:copy(s.txs, s.txs[len(pack.txs):])]
        if len(s.txs) == 0 {
            delete(pending, s.p.ID())
        }
        // Send the pack in the background.
        s.p.Log().Trace("Sending batch of transactions", "count", len(pack.txs), "bytes", size)
        sending = true
        go func() { done <- pack.p.SendTransactions(pack.txs) }()
    }

    // pick chooses the next pending sync.
    pick := func() *txsync {
        if len(pending) == 0 {
            return nil
        }
        n := rand.Intn(len(pending)) + 1
        for _, s := range pending {
            if n--; n == 0 {
                return s
            }
        }
        return nil
    }

    for {
        select {
        case s := <-pm.txsyncCh:
            pending[s.p.ID()] = s
            if !sending {
                send(s)
            }
        case err := <-done:
            sending = false
            // Stop tracking peers that cause send failures.
            if err != nil {
                pack.p.Log().Debug("Transaction send failed", "err", err)
                delete(pending, pack.p.ID())
            }
            // Schedule the next send.
            if s := pick(); s != nil {
                send(s)
            }
        case <-pm.quitSync:
            return
        }
    }
}

type metasync struct {
    p     *peer
    metas []*NodeMeta
}

// syncNodeMetas starts sending all node metas to the given peer.
func (pm *ProtocolManager) syncNodeMetas(p *peer) {
    metas := pm.nodeTable.Metas()
    if len(metas) == 0 {
        return
    }
    select {
    case pm.metasyncCh <- &metasync{p, metas}:
    case <-pm.quitSync:
    }
}

// metasyncLoop takes care of the initial node meta sync for each new
// connection. When a new peer appears, we relay all currently node metas.
// In order to minimise egress bandwidth usage, we send
// the metas in small packs to one peer at a time.
func (pm *ProtocolManager) metasyncLoop() {
    var (
        pending = make(map[enode.ID]*metasync)
        sending = false               // whether a send is active
        pack    = new(metasync)       // the pack that is being sent
        done    = make(chan error, 1) // result of the send
    )

    // send starts a sending a pack of transactions from the sync.
    send := func(s *metasync) {
        // Fill pack with node metas up to the target num.
        var num int
        pack.p = s.p
        pack.metas = pack.metas[:0]
        for i := 0; i < len(s.metas) && num < metasyncPackNum; i++ {
            pack.metas = append(pack.metas, s.metas[i])
            num += 1
        }
        // Remove the metas that will be sent.
        s.metas = s.metas[:copy(s.metas, s.metas[len(pack.metas):])]
        if len(s.metas) == 0 {
            delete(pending, s.p.ID())
        }
        // Send the pack in the background.
        s.p.Log().Trace("Sending batch of transactions", "count", len(pack.metas), "bytes", num)
        sending = true
        go func() { done <- pack.p.SendNodeMetas(pack.metas) }()
    }

    // pick chooses the next pending sync.
    pick := func() *metasync {
        if len(pending) == 0 {
            return nil
        }
        n := rand.Intn(len(pending)) + 1
        for _, s := range pending {
            if n--; n == 0 {
                return s
            }
        }
        return nil
    }

    for {
        select {
        case s := <-pm.metasyncCh:
            pending[s.p.ID()] = s
            if !sending {
                send(s)
            }
        case err := <-done:
            sending = false
            // Stop tracking peers that cause send failures.
            if err != nil {
                pack.p.Log().Debug("NodeMeta send failed", "err", err)
                delete(pending, pack.p.ID())
            }
            // Schedule the next send.
            if s := pick(); s != nil {
                send(s)
            }
        case <-pm.quitSync:
            return
        }
    }
}

// syncer is responsible for periodically synchronising with the network, both
// downloading hashes and blocks as well as handling the announcement handler.
func (pm *ProtocolManager) syncer() {
    // Start and ensure cleanup of sync mechanisms
    pm.fetcher.Start()
    defer pm.fetcher.Stop()
    defer pm.downloader.Terminate()

    // Wait for different events to fire synchronisation operations
    forceSync := time.NewTicker(forceSyncCycle)
    defer forceSync.Stop()

    for {
        select {
        case <-pm.newPeerCh:
            // Make sure we have peers to select from, then sync
            if pm.peers.Len() < minDesiredPeerCount {
                break
            }
            go pm.synchronise(pm.peers.BestPeer())

        case <-forceSync.C:
            // Force a sync even if not enough peers are present
            go pm.synchronise(pm.peers.BestPeer())

        case <-pm.noMorePeers:
            return
        }
    }
}

// synchronise tries to sync up our local block chain with a remote peer.
func (pm *ProtocolManager) synchronise(peer *peer) {
    // Short circuit if no peers are available
    if peer == nil {
        return
    }
    // Make sure the peer's number is higher than our own
    currentBlock := pm.blockchain.CurrentBlock()
    number := currentBlock.NumberU64()

    pHead, pNumber := peer.Head()

    // If we are behind the peer, but not more than acceptable distance, don't
    // trigger a sync. Fetcher is able to cover this.
    if pNumber <= number+acceptableDist {
        return
    }
    // Otherwise try to sync with the downloader
    mode := downloader.FullSync
    if atomic.LoadUint32(&pm.fastSync) == 1 {
        // Fast sync was explicitly requested, and explicitly granted
        mode = downloader.FastSync
    } else if currentBlock.NumberU64() == 0 && pm.blockchain.CurrentFastBlock().NumberU64() > 0 {
        // The database seems empty as the current block is the genesis. Yet the fast
        // block is ahead, so fast sync was enabled for this node at a certain point.
        // The only scenario where this can happen is if the user manually (or via a
        // bad block) rolled back a fast sync node below the sync point. In this case
        // however it's safe to reenable fast sync.
        atomic.StoreUint32(&pm.fastSync, 1)
        mode = downloader.FastSync
    }

    if mode == downloader.FastSync {
        // Make sure the peer's total difficulty we are synchronizing is higher.
        if pm.blockchain.CurrentFastBlock().NumberU64() >= pNumber {
            return
        }
    }

    // Run the sync cycle, and disable fast sync if we've went past the pivot block
    if err := pm.downloader.Synchronise(peer.id, pHead, pNumber, mode); err != nil {
        return
    }
    if atomic.LoadUint32(&pm.fastSync) == 1 {
        log.Info("Fast sync complete, auto disabling")
        atomic.StoreUint32(&pm.fastSync, 0)
    }
    atomic.StoreUint32(&pm.acceptTxs, 1) // Mark initial sync done
    if head := pm.blockchain.CurrentBlock(); head.NumberU64() > 0 {
        // We've completed a sync cycle, notify all peers of new state. This path is
        // essential in star-topology networks where a gateway node needs to notify
        // all its out-of-date peers of the availability of a new block. This failure
        // scenario will most often crop up in private and hackathon networks with
        // degenerate connectivity, but it should be healthy for the mainnet too to
        // more reliably update peers or the local number state.
        go pm.BroadcastBlock(head, false)
    }
}