aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/github.com/dexon-foundation/mcl/src/xbyak/xbyak.h
blob: 47494ef09ef2e37bfee80a85669ceddafb2970be (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
#pragma once
#ifndef XBYAK_XBYAK_H_
#define XBYAK_XBYAK_H_
/*!
    @file xbyak.h
    @brief Xbyak ; JIT assembler for x86(IA32)/x64 by C++
    @author herumi
    @url https://github.com/herumi/xbyak
    @note modified new BSD license
    http://opensource.org/licenses/BSD-3-Clause
*/
#ifndef XBYAK_NO_OP_NAMES
    #if not +0 // trick to detect whether 'not' is operator or not
        #error "use -fno-operator-names option if you want to use and(), or(), xor(), not() as function names, Or define XBYAK_NO_OP_NAMES and use and_(), or_(), xor_(), not_()."
    #endif
#endif

#include <stdio.h> // for debug print
#include <assert.h>
#include <list>
#include <string>
#include <algorithm>
#ifndef NDEBUG
#include <iostream>
#endif

// #define XBYAK_DISABLE_AVX512

//#define XBYAK_USE_MMAP_ALLOCATOR
#if !defined(__GNUC__) || defined(__MINGW32__)
    #undef XBYAK_USE_MMAP_ALLOCATOR
#endif

#ifdef __GNUC__
    #define XBYAK_GNUC_PREREQ(major, minor) ((__GNUC__) * 100 + (__GNUC_MINOR__) >= (major) * 100 + (minor))
#else
    #define XBYAK_GNUC_PREREQ(major, minor) 0
#endif

// This covers -std=(gnu|c)++(0x|11|1y), -stdlib=libc++, and modern Microsoft.
#if ((defined(_MSC_VER) && (_MSC_VER >= 1600)) || defined(_LIBCPP_VERSION) ||\
                 ((__cplusplus >= 201103) || defined(__GXX_EXPERIMENTAL_CXX0X__)))
    #include <unordered_map>
    #define XBYAK_STD_UNORDERED_MAP std::unordered_map
    #define XBYAK_STD_UNORDERED_MULTIMAP std::unordered_multimap

/*
    Clang/llvm-gcc and ICC-EDG in 'GCC-mode' always claim to be GCC 4.2, using
    libstdcxx 20070719 (from GCC 4.2.1, the last GPL 2 version).
*/
#elif XBYAK_GNUC_PREREQ(4, 5) || (XBYAK_GNUC_PREREQ(4, 2) && __GLIBCXX__ >= 20070719) || defined(__INTEL_COMPILER) || defined(__llvm__)
    #include <tr1/unordered_map>
    #define XBYAK_STD_UNORDERED_MAP std::tr1::unordered_map
    #define XBYAK_STD_UNORDERED_MULTIMAP std::tr1::unordered_multimap

#elif defined(_MSC_VER) && (_MSC_VER >= 1500) && (_MSC_VER < 1600)
    #include <unordered_map>
    #define XBYAK_STD_UNORDERED_MAP std::tr1::unordered_map
    #define XBYAK_STD_UNORDERED_MULTIMAP std::tr1::unordered_multimap

#else
    #include <map>
    #define XBYAK_STD_UNORDERED_MAP std::map
    #define XBYAK_STD_UNORDERED_MULTIMAP std::multimap
#endif
#ifdef _WIN32
    #include <winsock2.h>
    #include <windows.h>
    #include <malloc.h>
#elif defined(__GNUC__)
    #include <unistd.h>
    #include <sys/mman.h>
    #include <stdlib.h>
#endif
#if !defined(_MSC_VER) || (_MSC_VER >= 1600)
    #include <stdint.h>
#endif

#if defined(_WIN64) || defined(__MINGW64__) || (defined(__CYGWIN__) && defined(__x86_64__))
    #define XBYAK64_WIN
#elif defined(__x86_64__)
    #define XBYAK64_GCC
#endif
#if !defined(XBYAK64) && !defined(XBYAK32)
    #if defined(XBYAK64_GCC) || defined(XBYAK64_WIN)
        #define XBYAK64
    #else
        #define XBYAK32
    #endif
#endif

#if (__cplusplus >= 201103) || (_MSC_VER >= 1800)
    #define XBYAK_VARIADIC_TEMPLATE
#endif

#ifdef _MSC_VER
    #pragma warning(push)
    #pragma warning(disable : 4514) /* remove inline function */
    #pragma warning(disable : 4786) /* identifier is too long */
    #pragma warning(disable : 4503) /* name is too long */
    #pragma warning(disable : 4127) /* constant expresison */
#endif

namespace Xbyak {

enum {
    DEFAULT_MAX_CODE_SIZE = 4096,
    VERSION = 0x5730 /* 0xABCD = A.BC(D) */
};

#ifndef MIE_INTEGER_TYPE_DEFINED
#define MIE_INTEGER_TYPE_DEFINED
#ifdef _MSC_VER
    typedef unsigned __int64 uint64;
    typedef __int64 sint64;
#else
    typedef uint64_t uint64;
    typedef int64_t sint64;
#endif
typedef unsigned int uint32;
typedef unsigned short uint16;
typedef unsigned char uint8;
#endif

#ifndef MIE_ALIGN
    #ifdef _MSC_VER
        #define MIE_ALIGN(x) __declspec(align(x))
    #else
        #define MIE_ALIGN(x) __attribute__((aligned(x)))
    #endif
#endif
#ifndef MIE_PACK // for shufps
    #define MIE_PACK(x, y, z, w) ((x) * 64 + (y) * 16 + (z) * 4 + (w))
#endif

enum {
    ERR_NONE = 0,
    ERR_BAD_ADDRESSING,
    ERR_CODE_IS_TOO_BIG,
    ERR_BAD_SCALE,
    ERR_ESP_CANT_BE_INDEX,
    ERR_BAD_COMBINATION,
    ERR_BAD_SIZE_OF_REGISTER,
    ERR_IMM_IS_TOO_BIG,
    ERR_BAD_ALIGN,
    ERR_LABEL_IS_REDEFINED,
    ERR_LABEL_IS_TOO_FAR,
    ERR_LABEL_IS_NOT_FOUND,
    ERR_CODE_ISNOT_COPYABLE,
    ERR_BAD_PARAMETER,
    ERR_CANT_PROTECT,
    ERR_CANT_USE_64BIT_DISP,
    ERR_OFFSET_IS_TOO_BIG,
    ERR_MEM_SIZE_IS_NOT_SPECIFIED,
    ERR_BAD_MEM_SIZE,
    ERR_BAD_ST_COMBINATION,
    ERR_OVER_LOCAL_LABEL, // not used
    ERR_UNDER_LOCAL_LABEL,
    ERR_CANT_ALLOC,
    ERR_ONLY_T_NEAR_IS_SUPPORTED_IN_AUTO_GROW,
    ERR_BAD_PROTECT_MODE,
    ERR_BAD_PNUM,
    ERR_BAD_TNUM,
    ERR_BAD_VSIB_ADDRESSING,
    ERR_CANT_CONVERT,
    ERR_LABEL_ISNOT_SET_BY_L,
    ERR_LABEL_IS_ALREADY_SET_BY_L,
    ERR_BAD_LABEL_STR,
    ERR_MUNMAP,
    ERR_OPMASK_IS_ALREADY_SET,
    ERR_ROUNDING_IS_ALREADY_SET,
    ERR_K0_IS_INVALID,
    ERR_EVEX_IS_INVALID,
    ERR_SAE_IS_INVALID,
    ERR_ER_IS_INVALID,
    ERR_INVALID_BROADCAST,
    ERR_INVALID_OPMASK_WITH_MEMORY,
    ERR_INVALID_ZERO,
    ERR_INVALID_RIP_IN_AUTO_GROW,
    ERR_INVALID_MIB_ADDRESS,
    ERR_INTERNAL
};

class Error : public std::exception {
    int err_;
public:
    explicit Error(int err) : err_(err)
    {
        if (err_ < 0 || err_ > ERR_INTERNAL) {
            fprintf(stderr, "bad err=%d in Xbyak::Error\n", err_);
            exit(1);
        }
    }
    operator int() const { return err_; }
    const char *what() const throw()
    {
        static const char *errTbl[] = {
            "none",
            "bad addressing",
            "code is too big",
            "bad scale",
            "esp can't be index",
            "bad combination",
            "bad size of register",
            "imm is too big",
            "bad align",
            "label is redefined",
            "label is too far",
            "label is not found",
            "code is not copyable",
            "bad parameter",
            "can't protect",
            "can't use 64bit disp(use (void*))",
            "offset is too big",
            "MEM size is not specified",
            "bad mem size",
            "bad st combination",
            "over local label",
            "under local label",
            "can't alloc",
            "T_SHORT is not supported in AutoGrow",
            "bad protect mode",
            "bad pNum",
            "bad tNum",
            "bad vsib addressing",
            "can't convert",
            "label is not set by L()",
            "label is already set by L()",
            "bad label string",
            "err munmap",
            "opmask is already set",
            "rounding is already set",
            "k0 is invalid",
            "evex is invalid",
            "sae(suppress all exceptions) is invalid",
            "er(embedded rounding) is invalid",
            "invalid broadcast",
            "invalid opmask with memory",
            "invalid zero",
            "invalid rip in AutoGrow",
            "invalid mib address",
            "internal error",
        };
        assert((size_t)err_ < sizeof(errTbl) / sizeof(*errTbl));
        return errTbl[err_];
    }
};

inline const char *ConvertErrorToString(const Error& err)
{
    return err.what();
}

inline void *AlignedMalloc(size_t size, size_t alignment)
{
#ifdef __MINGW32__
    return __mingw_aligned_malloc(size, alignment);
#elif defined(_WIN32)
    return _aligned_malloc(size, alignment);
#else
    void *p;
    int ret = posix_memalign(&p, alignment, size);
    return (ret == 0) ? p : 0;
#endif
}

inline void AlignedFree(void *p)
{
#ifdef __MINGW32__
    __mingw_aligned_free(p);
#elif defined(_MSC_VER)
    _aligned_free(p);
#else
    free(p);
#endif
}

template<class To, class From>
inline const To CastTo(From p) throw()
{
    return (const To)(size_t)(p);
}
namespace inner {

static const size_t ALIGN_PAGE_SIZE = 4096;

inline bool IsInDisp8(uint32 x) { return 0xFFFFFF80 <= x || x <= 0x7F; }
inline bool IsInInt32(uint64 x) { return ~uint64(0x7fffffffu) <= x || x <= 0x7FFFFFFFU; }

inline uint32 VerifyInInt32(uint64 x)
{
#ifdef XBYAK64
    if (!IsInInt32(x)) throw Error(ERR_OFFSET_IS_TOO_BIG);
#endif
    return static_cast<uint32>(x);
}

enum LabelMode {
    LasIs, // as is
    Labs, // absolute
    LaddTop // (addr + top) for mov(reg, label) with AutoGrow
};

} // inner

/*
    custom allocator
*/
struct Allocator {
    virtual uint8 *alloc(size_t size) { return reinterpret_cast<uint8*>(AlignedMalloc(size, inner::ALIGN_PAGE_SIZE)); }
    virtual void free(uint8 *p) { AlignedFree(p); }
    virtual ~Allocator() {}
    /* override to return false if you call protect() manually */
    virtual bool useProtect() const { return true; }
};

#ifdef XBYAK_USE_MMAP_ALLOCATOR
class MmapAllocator : Allocator {
    typedef XBYAK_STD_UNORDERED_MAP<uintptr_t, size_t> SizeList;
    SizeList sizeList_;
public:
    uint8 *alloc(size_t size)
    {
        const size_t alignedSizeM1 = inner::ALIGN_PAGE_SIZE - 1;
        size = (size + alignedSizeM1) & ~alignedSizeM1;
#ifdef MAP_ANONYMOUS
        const int mode = MAP_PRIVATE | MAP_ANONYMOUS;
#elif defined(MAP_ANON)
        const int mode = MAP_PRIVATE | MAP_ANON;
#else
        #error "not supported"
#endif
        void *p = mmap(NULL, size, PROT_READ | PROT_WRITE, mode, -1, 0);
        if (p == MAP_FAILED) throw Error(ERR_CANT_ALLOC);
        assert(p);
        sizeList_[(uintptr_t)p] = size;
        return (uint8*)p;
    }
    void free(uint8 *p)
    {
        if (p == 0) return;
        SizeList::iterator i = sizeList_.find((uintptr_t)p);
        if (i == sizeList_.end()) throw Error(ERR_BAD_PARAMETER);
        if (munmap((void*)i->first, i->second) < 0) throw Error(ERR_MUNMAP);
        sizeList_.erase(i);
    }
};
#endif

class Address;
class Reg;

class Operand {
    static const uint8 EXT8BIT = 0x20;
    unsigned int idx_:6; // 0..31 + EXT8BIT = 1 if spl/bpl/sil/dil
    unsigned int kind_:9;
    unsigned int bit_:10;
protected:
    unsigned int zero_:1;
    unsigned int mask_:3;
    unsigned int rounding_:3;
    void setIdx(int idx) { idx_ = idx; }
public:
    enum Kind {
        NONE = 0,
        MEM = 1 << 0,
        REG = 1 << 1,
        MMX = 1 << 2,
        FPU = 1 << 3,
        XMM = 1 << 4,
        YMM = 1 << 5,
        ZMM = 1 << 6,
        OPMASK = 1 << 7,
        BNDREG = 1 << 8
    };
    enum Code {
#ifdef XBYAK64
        RAX = 0, RCX, RDX, RBX, RSP, RBP, RSI, RDI, R8, R9, R10, R11, R12, R13, R14, R15,
        R8D = 8, R9D, R10D, R11D, R12D, R13D, R14D, R15D,
        R8W = 8, R9W, R10W, R11W, R12W, R13W, R14W, R15W,
        R8B = 8, R9B, R10B, R11B, R12B, R13B, R14B, R15B,
        SPL = 4, BPL, SIL, DIL,
#endif
        EAX = 0, ECX, EDX, EBX, ESP, EBP, ESI, EDI,
        AX = 0, CX, DX, BX, SP, BP, SI, DI,
        AL = 0, CL, DL, BL, AH, CH, DH, BH
    };
    Operand() : idx_(0), kind_(0), bit_(0), zero_(0), mask_(0), rounding_(0) { }
    Operand(int idx, Kind kind, int bit, bool ext8bit = 0)
        : idx_(static_cast<uint8>(idx | (ext8bit ? EXT8BIT : 0)))
        , kind_(kind)
        , bit_(bit)
        , zero_(0), mask_(0), rounding_(0)
    {
        assert((bit_ & (bit_ - 1)) == 0); // bit must be power of two
    }
    Kind getKind() const { return static_cast<Kind>(kind_); }
    int getIdx() const { return idx_ & (EXT8BIT - 1); }
    bool isNone() const { return kind_ == 0; }
    bool isMMX() const { return is(MMX); }
    bool isXMM() const { return is(XMM); }
    bool isYMM() const { return is(YMM); }
    bool isZMM() const { return is(ZMM); }
    bool isXMEM() const { return is(XMM | MEM); }
    bool isYMEM() const { return is(YMM | MEM); }
    bool isZMEM() const { return is(ZMM | MEM); }
    bool isOPMASK() const { return is(OPMASK); }
    bool isBNDREG() const { return is(BNDREG); }
    bool isREG(int bit = 0) const { return is(REG, bit); }
    bool isMEM(int bit = 0) const { return is(MEM, bit); }
    bool isFPU() const { return is(FPU); }
    bool isExt8bit() const { return (idx_ & EXT8BIT) != 0; }
    bool isExtIdx() const { return (getIdx() & 8) != 0; }
    bool isExtIdx2() const { return (getIdx() & 16) != 0; }
    bool hasEvex() const { return isZMM() || isExtIdx2() || getOpmaskIdx() || getRounding(); }
    bool hasRex() const { return isExt8bit() || isREG(64) || isExtIdx(); }
    bool hasZero() const { return zero_; }
    int getOpmaskIdx() const { return mask_; }
    int getRounding() const { return rounding_; }
    void setKind(Kind kind)
    {
        if ((kind & (XMM|YMM|ZMM)) == 0) return;
        kind_ = kind;
        bit_ = kind == XMM ? 128 : kind == YMM ? 256 : 512;
    }
    void setBit(int bit) { bit_ = bit; }
    void setOpmaskIdx(int idx, bool ignore_idx0 = false)
    {
        if (!ignore_idx0 && idx == 0) throw Error(ERR_K0_IS_INVALID);
        if (mask_) throw Error(ERR_OPMASK_IS_ALREADY_SET);
        mask_ = idx;
    }
    void setRounding(int idx)
    {
        if (rounding_) throw Error(ERR_ROUNDING_IS_ALREADY_SET);
        rounding_ = idx;
    }
    void setZero() { zero_ = true; }
    // ah, ch, dh, bh?
    bool isHigh8bit() const
    {
        if (!isBit(8)) return false;
        if (isExt8bit()) return false;
        const int idx = getIdx();
        return AH <= idx && idx <= BH;
    }
    // any bit is accetable if bit == 0
    bool is(int kind, uint32 bit = 0) const
    {
        return (kind == 0 || (kind_ & kind)) && (bit == 0 || (bit_ & bit)); // cf. you can set (8|16)
    }
    bool isBit(uint32 bit) const { return (bit_ & bit) != 0; }
    uint32 getBit() const { return bit_; }
    const char *toString() const
    {
        const int idx = getIdx();
        if (kind_ == REG) {
            if (isExt8bit()) {
                static const char *tbl[4] = { "spl", "bpl", "sil", "dil" };
                return tbl[idx - 4];
            }
            static const char *tbl[4][16] = {
                { "al", "cl", "dl", "bl", "ah", "ch", "dh", "bh", "r8b", "r9b", "r10b",  "r11b", "r12b", "r13b", "r14b", "r15b" },
                { "ax", "cx", "dx", "bx", "sp", "bp", "si", "di", "r8w", "r9w", "r10w",  "r11w", "r12w", "r13w", "r14w", "r15w" },
                { "eax", "ecx", "edx", "ebx", "esp", "ebp", "esi", "edi", "r8d", "r9d", "r10d",  "r11d", "r12d", "r13d", "r14d", "r15d" },
                { "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", "r8", "r9", "r10",  "r11", "r12", "r13", "r14", "r15" },
            };
            return tbl[bit_ == 8 ? 0 : bit_ == 16 ? 1 : bit_ == 32 ? 2 : 3][idx];
        } else if (isOPMASK()) {
            static const char *tbl[8] = { "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" };
            return tbl[idx];
        } else if (isZMM()) {
            static const char *tbl[32] = {
                "zmm0", "zmm1", "zmm2", "zmm3", "zmm4", "zmm5", "zmm6", "zmm7", "zmm8", "zmm9", "zmm10", "zmm11", "zmm12", "zmm13", "zmm14", "zmm15",
                "zmm16", "zmm17", "zmm18", "zmm19", "zmm20", "zmm21", "zmm22", "zmm23", "zmm24", "zmm25", "zmm26", "zmm27", "zmm28", "zmm29", "zmm30", "zmm31"
            };
            return tbl[idx];
        } else if (isYMM()) {
            static const char *tbl[32] = {
                "ymm0", "ymm1", "ymm2", "ymm3", "ymm4", "ymm5", "ymm6", "ymm7", "ymm8", "ymm9", "ymm10", "ymm11", "ymm12", "ymm13", "ymm14", "ymm15",
                "ymm16", "ymm17", "ymm18", "ymm19", "ymm20", "ymm21", "ymm22", "ymm23", "ymm24", "ymm25", "ymm26", "ymm27", "ymm28", "ymm29", "ymm30", "ymm31"
            };
            return tbl[idx];
        } else if (isXMM()) {
            static const char *tbl[32] = {
                "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
                "xmm16", "xmm17", "xmm18", "xmm19", "xmm20", "xmm21", "xmm22", "xmm23", "xmm24", "xmm25", "xmm26", "xmm27", "xmm28", "xmm29", "xmm30", "xmm31"
            };
            return tbl[idx];
        } else if (isMMX()) {
            static const char *tbl[8] = { "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" };
            return tbl[idx];
        } else if (isFPU()) {
            static const char *tbl[8] = { "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7" };
            return tbl[idx];
        } else if (isBNDREG()) {
            static const char *tbl[4] = { "bnd0", "bnd1", "bnd2", "bnd3" };
            return tbl[idx];
        }
        throw Error(ERR_INTERNAL);
    }
    bool isEqualIfNotInherited(const Operand& rhs) const { return idx_ == rhs.idx_ && kind_ == rhs.kind_ && bit_ == rhs.bit_ && zero_ == rhs.zero_ && mask_ == rhs.mask_ && rounding_ == rhs.rounding_; }
    bool operator==(const Operand& rhs) const;
    bool operator!=(const Operand& rhs) const { return !operator==(rhs); }
    const Address& getAddress() const;
    const Reg& getReg() const;
};

class Label;

struct Reg8;
struct Reg16;
struct Reg32;
#ifdef XBYAK64
struct Reg64;
#endif
class Reg : public Operand {
public:
    Reg() { }
    Reg(int idx, Kind kind, int bit = 0, bool ext8bit = false) : Operand(idx, kind, bit, ext8bit) { }
    Reg changeBit(int bit) const { return Reg(getIdx(), getKind(), bit, isExt8bit()); }
    uint8 getRexW() const { return isREG(64) ? 8 : 0; }
    uint8 getRexR() const { return isExtIdx() ? 4 : 0; }
    uint8 getRexX() const { return isExtIdx() ? 2 : 0; }
    uint8 getRexB() const { return isExtIdx() ? 1 : 0; }
    uint8 getRex(const Reg& base = Reg()) const
    {
        uint8 rex = getRexW() | getRexR() | base.getRexW() | base.getRexB();
        if (rex || isExt8bit() || base.isExt8bit()) rex |= 0x40;
        return rex;
    }
    Reg8 cvt8() const;
    Reg16 cvt16() const;
    Reg32 cvt32() const;
#ifdef XBYAK64
    Reg64 cvt64() const;
#endif
};

inline const Reg& Operand::getReg() const
{
    assert(!isMEM());
    return static_cast<const Reg&>(*this);
}

struct Reg8 : public Reg {
    explicit Reg8(int idx = 0, bool ext8bit = false) : Reg(idx, Operand::REG, 8, ext8bit) { }
};

struct Reg16 : public Reg {
    explicit Reg16(int idx = 0) : Reg(idx, Operand::REG, 16) { }
};

struct Mmx : public Reg {
    explicit Mmx(int idx = 0, Kind kind = Operand::MMX, int bit = 64) : Reg(idx, kind, bit) { }
};

struct EvexModifierRounding {
    enum {
        T_RN_SAE = 1,
        T_RD_SAE = 2,
        T_RU_SAE = 3,
        T_RZ_SAE = 4,
        T_SAE = 5
    };
    explicit EvexModifierRounding(int rounding) : rounding(rounding) {}
    int rounding;
};
struct EvexModifierZero{EvexModifierZero() {}};

struct Xmm : public Mmx {
    explicit Xmm(int idx = 0, Kind kind = Operand::XMM, int bit = 128) : Mmx(idx, kind, bit) { }
    Xmm(Kind kind, int idx) : Mmx(idx, kind, kind == XMM ? 128 : kind == YMM ? 256 : 512) { }
    Xmm operator|(const EvexModifierRounding& emr) const { Xmm r(*this); r.setRounding(emr.rounding); return r; }
    Xmm copyAndSetIdx(int idx) const { Xmm ret(*this); ret.setIdx(idx); return ret; }
    Xmm copyAndSetKind(Operand::Kind kind) const { Xmm ret(*this); ret.setKind(kind); return ret; }
};

struct Ymm : public Xmm {
    explicit Ymm(int idx = 0, Kind kind = Operand::YMM, int bit = 256) : Xmm(idx, kind, bit) { }
    Ymm operator|(const EvexModifierRounding& emr) const { Ymm r(*this); r.setRounding(emr.rounding); return r; }
};

struct Zmm : public Ymm {
    explicit Zmm(int idx = 0) : Ymm(idx, Operand::ZMM, 512) { }
    Zmm operator|(const EvexModifierRounding& emr) const { Zmm r(*this); r.setRounding(emr.rounding); return r; }
};

struct Opmask : public Reg {
    explicit Opmask(int idx = 0) : Reg(idx, Operand::OPMASK, 64) {}
};

struct BoundsReg : public Reg {
    explicit BoundsReg(int idx = 0) : Reg(idx, Operand::BNDREG, 128) {}
};

template<class T>T operator|(const T& x, const Opmask& k) { T r(x); r.setOpmaskIdx(k.getIdx()); return r; }
template<class T>T operator|(const T& x, const EvexModifierZero&) { T r(x); r.setZero(); return r; }
template<class T>T operator|(const T& x, const EvexModifierRounding& emr) { T r(x); r.setRounding(emr.rounding); return r; }

struct Fpu : public Reg {
    explicit Fpu(int idx = 0) : Reg(idx, Operand::FPU, 32) { }
};

struct Reg32e : public Reg {
    explicit Reg32e(int idx, int bit) : Reg(idx, Operand::REG, bit) {}
};
struct Reg32 : public Reg32e {
    explicit Reg32(int idx = 0) : Reg32e(idx, 32) {}
};
#ifdef XBYAK64
struct Reg64 : public Reg32e {
    explicit Reg64(int idx = 0) : Reg32e(idx, 64) {}
};
struct RegRip {
    sint64 disp_;
    const Label* label_;
    bool isAddr_;
    explicit RegRip(sint64 disp = 0, const Label* label = 0, bool isAddr = false) : disp_(disp), label_(label), isAddr_(isAddr) {}
    friend const RegRip operator+(const RegRip& r, int disp) {
        return RegRip(r.disp_ + disp, r.label_, r.isAddr_);
    }
    friend const RegRip operator-(const RegRip& r, int disp) {
        return RegRip(r.disp_ - disp, r.label_, r.isAddr_);
    }
    friend const RegRip operator+(const RegRip& r, sint64 disp) {
        return RegRip(r.disp_ + disp, r.label_, r.isAddr_);
    }
    friend const RegRip operator-(const RegRip& r, sint64 disp) {
        return RegRip(r.disp_ - disp, r.label_, r.isAddr_);
    }
    friend const RegRip operator+(const RegRip& r, const Label& label) {
        if (r.label_ || r.isAddr_) throw Error(ERR_BAD_ADDRESSING);
        return RegRip(r.disp_, &label);
    }
    friend const RegRip operator+(const RegRip& r, const void *addr) {
        if (r.label_ || r.isAddr_) throw Error(ERR_BAD_ADDRESSING);
        return RegRip(r.disp_ + (sint64)addr, 0, true);
    }
};
#endif

inline Reg8 Reg::cvt8() const
{
    const int idx = getIdx();
    if (isBit(8)) return Reg8(idx, isExt8bit());
#ifdef XBYAK32
    if (idx >= 4) throw Error(ERR_CANT_CONVERT);
#endif
    return Reg8(idx, 4 <= idx && idx < 8);
}

inline Reg16 Reg::cvt16() const
{
    const int idx = getIdx();
    if (isBit(8) && (4 <= idx && idx < 8) && !isExt8bit()) throw Error(ERR_CANT_CONVERT);
    return Reg16(idx);
}

inline Reg32 Reg::cvt32() const
{
    const int idx = getIdx();
    if (isBit(8) && (4 <= idx && idx < 8) && !isExt8bit()) throw Error(ERR_CANT_CONVERT);
    return Reg32(idx);
}

#ifdef XBYAK64
inline Reg64 Reg::cvt64() const
{
    const int idx = getIdx();
    if (isBit(8) && (4 <= idx && idx < 8) && !isExt8bit()) throw Error(ERR_CANT_CONVERT);
    return Reg64(idx);
}
#endif

#ifndef XBYAK_DISABLE_SEGMENT
// not derived from Reg
class Segment {
    int idx_;
public:
    enum {
        es, cs, ss, ds, fs, gs
    };
    explicit Segment(int idx) : idx_(idx) { assert(0 <= idx_ && idx_ < 6); }
    int getIdx() const { return idx_; }
    const char *toString() const
    {
        static const char tbl[][3] = {
            "es", "cs", "ss", "ds", "fs", "gs"
        };
        return tbl[idx_];
    }
};
#endif

class RegExp {
public:
#ifdef XBYAK64
    enum { i32e = 32 | 64 };
#else
    enum { i32e = 32 };
#endif
    RegExp(size_t disp = 0) : scale_(0), disp_(disp) { }
    RegExp(const Reg& r, int scale = 1)
        : scale_(scale)
        , disp_(0)
    {
        if (!r.isREG(i32e) && !r.is(Reg::XMM|Reg::YMM|Reg::ZMM)) throw Error(ERR_BAD_SIZE_OF_REGISTER);
        if (scale == 0) return;
        if (scale != 1 && scale != 2 && scale != 4 && scale != 8) throw Error(ERR_BAD_SCALE);
        if (r.getBit() >= 128 || scale != 1) { // xmm/ymm is always index
            index_ = r;
        } else {
            base_ = r;
        }
    }
    bool isVsib(int bit = 128 | 256 | 512) const { return index_.isBit(bit); }
    RegExp optimize() const
    {
        RegExp exp = *this;
        // [reg * 2] => [reg + reg]
        if (index_.isBit(i32e) && !base_.getBit() && scale_ == 2) {
            exp.base_ = index_;
            exp.scale_ = 1;
        }
        return exp;
    }
    bool operator==(const RegExp& rhs) const
    {
        return base_ == rhs.base_ && index_ == rhs.index_ && disp_ == rhs.disp_ && scale_ == rhs.scale_;
    }
    const Reg& getBase() const { return base_; }
    const Reg& getIndex() const { return index_; }
    int getScale() const { return scale_; }
    size_t getDisp() const { return disp_; }
    void verify() const
    {
        if (base_.getBit() >= 128) throw Error(ERR_BAD_SIZE_OF_REGISTER);
        if (index_.getBit() && index_.getBit() <= 64) {
            if (index_.getIdx() == Operand::ESP) throw Error(ERR_ESP_CANT_BE_INDEX);
            if (base_.getBit() && base_.getBit() != index_.getBit()) throw Error(ERR_BAD_SIZE_OF_REGISTER);
        }
    }
    friend RegExp operator+(const RegExp& a, const RegExp& b);
    friend RegExp operator-(const RegExp& e, size_t disp);
    uint8 getRex() const
    {
        uint8 rex = index_.getRexX() | base_.getRexB();
        return rex ? uint8(rex | 0x40) : 0;
    }
private:
    /*
        [base_ + index_ * scale_ + disp_]
        base : Reg32e, index : Reg32e(w/o esp), Xmm, Ymm
    */
    Reg base_;
    Reg index_;
    int scale_;
    size_t disp_;
};

inline RegExp operator+(const RegExp& a, const RegExp& b)
{
    if (a.index_.getBit() && b.index_.getBit()) throw Error(ERR_BAD_ADDRESSING);
    RegExp ret = a;
    if (!ret.index_.getBit()) { ret.index_ = b.index_; ret.scale_ = b.scale_; }
    if (b.base_.getBit()) {
        if (ret.base_.getBit()) {
            if (ret.index_.getBit()) throw Error(ERR_BAD_ADDRESSING);
            // base + base => base + index * 1
            ret.index_ = b.base_;
            // [reg + esp] => [esp + reg]
            if (ret.index_.getIdx() == Operand::ESP) std::swap(ret.base_, ret.index_);
            ret.scale_ = 1;
        } else {
            ret.base_ = b.base_;
        }
    }
    ret.disp_ += b.disp_;
    return ret;
}
inline RegExp operator*(const Reg& r, int scale)
{
    return RegExp(r, scale);
}
inline RegExp operator-(const RegExp& e, size_t disp)
{
    RegExp ret = e;
    ret.disp_ -= disp;
    return ret;
}

// 2nd parameter for constructor of CodeArray(maxSize, userPtr, alloc)
void *const AutoGrow = (void*)1; //-V566
void *const DontSetProtectRWE = (void*)2; //-V566

class CodeArray {
    enum Type {
        USER_BUF = 1, // use userPtr(non alignment, non protect)
        ALLOC_BUF, // use new(alignment, protect)
        AUTO_GROW // automatically move and grow memory if necessary
    };
    CodeArray(const CodeArray& rhs);
    void operator=(const CodeArray&);
    bool isAllocType() const { return type_ == ALLOC_BUF || type_ == AUTO_GROW; }
    struct AddrInfo {
        size_t codeOffset; // position to write
        size_t jmpAddr; // value to write
        int jmpSize; // size of jmpAddr
        inner::LabelMode mode;
        AddrInfo(size_t _codeOffset, size_t _jmpAddr, int _jmpSize, inner::LabelMode _mode)
            : codeOffset(_codeOffset), jmpAddr(_jmpAddr), jmpSize(_jmpSize), mode(_mode) {}
        uint64 getVal(const uint8 *top) const
        {
            uint64 disp = (mode == inner::LaddTop) ? jmpAddr + size_t(top) : (mode == inner::LasIs) ? jmpAddr : jmpAddr - size_t(top);
            if (jmpSize == 4) disp = inner::VerifyInInt32(disp);
            return disp;
        }
    };
    typedef std::list<AddrInfo> AddrInfoList;
    AddrInfoList addrInfoList_;
    const Type type_;
#ifdef XBYAK_USE_MMAP_ALLOCATOR
    MmapAllocator defaultAllocator_;
#else
    Allocator defaultAllocator_;
#endif
    Allocator *alloc_;
protected:
    size_t maxSize_;
    uint8 *top_;
    size_t size_;
    bool isCalledCalcJmpAddress_;

    bool useProtect() const { return alloc_->useProtect(); }
    /*
        allocate new memory and copy old data to the new area
    */
    void growMemory()
    {
        const size_t newSize = (std::max<size_t>)(DEFAULT_MAX_CODE_SIZE, maxSize_ * 2);
        uint8 *newTop = alloc_->alloc(newSize);
        if (newTop == 0) throw Error(ERR_CANT_ALLOC);
        for (size_t i = 0; i < size_; i++) newTop[i] = top_[i];
        alloc_->free(top_);
        top_ = newTop;
        maxSize_ = newSize;
    }
    /*
        calc jmp address for AutoGrow mode
    */
    void calcJmpAddress()
    {
        if (isCalledCalcJmpAddress_) return;
        for (AddrInfoList::const_iterator i = addrInfoList_.begin(), ie = addrInfoList_.end(); i != ie; ++i) {
            uint64 disp = i->getVal(top_);
            rewrite(i->codeOffset, disp, i->jmpSize);
        }
        isCalledCalcJmpAddress_ = true;
    }
public:
    enum ProtectMode {
        PROTECT_RW = 0, // read/write
        PROTECT_RWE = 1, // read/write/exec
        PROTECT_RE = 2 // read/exec
    };
    explicit CodeArray(size_t maxSize, void *userPtr = 0, Allocator *allocator = 0)
        : type_(userPtr == AutoGrow ? AUTO_GROW : (userPtr == 0 || userPtr == DontSetProtectRWE) ? ALLOC_BUF : USER_BUF)
        , alloc_(allocator ? allocator : (Allocator*)&defaultAllocator_)
        , maxSize_(maxSize)
        , top_(type_ == USER_BUF ? reinterpret_cast<uint8*>(userPtr) : alloc_->alloc((std::max<size_t>)(maxSize, 1)))
        , size_(0)
        , isCalledCalcJmpAddress_(false)
    {
        if (maxSize_ > 0 && top_ == 0) throw Error(ERR_CANT_ALLOC);
        if ((type_ == ALLOC_BUF && userPtr != DontSetProtectRWE && useProtect()) && !setProtectMode(PROTECT_RWE, false)) {
            alloc_->free(top_);
            throw Error(ERR_CANT_PROTECT);
        }
    }
    virtual ~CodeArray()
    {
        if (isAllocType()) {
            if (useProtect()) setProtectModeRW(false);
            alloc_->free(top_);
        }
    }
    bool setProtectMode(ProtectMode mode, bool throwException = true)
    {
        bool isOK = protect(top_, maxSize_, mode);
        if (isOK) return true;
        if (throwException) throw Error(ERR_CANT_PROTECT);
        return false;
    }
    bool setProtectModeRE(bool throwException = true) { return setProtectMode(PROTECT_RE, throwException); }
    bool setProtectModeRW(bool throwException = true) { return setProtectMode(PROTECT_RW, throwException); }
    void resetSize()
    {
        size_ = 0;
        addrInfoList_.clear();
        isCalledCalcJmpAddress_ = false;
    }
    void db(int code)
    {
        if (size_ >= maxSize_) {
            if (type_ == AUTO_GROW) {
                growMemory();
            } else {
                throw Error(ERR_CODE_IS_TOO_BIG);
            }
        }
        top_[size_++] = static_cast<uint8>(code);
    }
    void db(const uint8 *code, size_t codeSize)
    {
        for (size_t i = 0; i < codeSize; i++) db(code[i]);
    }
    void db(uint64 code, size_t codeSize)
    {
        if (codeSize > 8) throw Error(ERR_BAD_PARAMETER);
        for (size_t i = 0; i < codeSize; i++) db(static_cast<uint8>(code >> (i * 8)));
    }
    void dw(uint32 code) { db(code, 2); }
    void dd(uint32 code) { db(code, 4); }
    void dq(uint64 code) { db(code, 8); }
    const uint8 *getCode() const { return top_; }
    template<class F>
    const F getCode() const { return CastTo<F>(top_); }
    const uint8 *getCurr() const { return &top_[size_]; }
    template<class F>
    const F getCurr() const { return CastTo<F>(&top_[size_]); }
    size_t getSize() const { return size_; }
    void setSize(size_t size)
    {
        if (size > maxSize_) throw Error(ERR_OFFSET_IS_TOO_BIG);
        size_ = size;
    }
    void dump() const
    {
        const uint8 *p = getCode();
        size_t bufSize = getSize();
        size_t remain = bufSize;
        for (int i = 0; i < 4; i++) {
            size_t disp = 16;
            if (remain < 16) {
                disp = remain;
            }
            for (size_t j = 0; j < 16; j++) {
                if (j < disp) {
                    printf("%02X", p[i * 16 + j]);
                }
            }
            putchar('\n');
            remain -= disp;
            if (remain == 0) {
                break;
            }
        }
    }
    /*
        @param offset [in] offset from top
        @param disp [in] offset from the next of jmp
        @param size [in] write size(1, 2, 4, 8)
    */
    void rewrite(size_t offset, uint64 disp, size_t size)
    {
        assert(offset < maxSize_);
        if (size != 1 && size != 2 && size != 4 && size != 8) throw Error(ERR_BAD_PARAMETER);
        uint8 *const data = top_ + offset;
        for (size_t i = 0; i < size; i++) {
            data[i] = static_cast<uint8>(disp >> (i * 8));
        }
    }
    void save(size_t offset, size_t val, int size, inner::LabelMode mode)
    {
        addrInfoList_.push_back(AddrInfo(offset, val, size, mode));
    }
    bool isAutoGrow() const { return type_ == AUTO_GROW; }
    bool isCalledCalcJmpAddress() const { return isCalledCalcJmpAddress_; }
    /**
        change exec permission of memory
        @param addr [in] buffer address
        @param size [in] buffer size
        @param protectMode [in] mode(RW/RWE/RE)
        @return true(success), false(failure)
    */
    static inline bool protect(const void *addr, size_t size, int protectMode)
    {
#if defined(_WIN32)
        const DWORD c_rw = PAGE_READWRITE;
        const DWORD c_rwe = PAGE_EXECUTE_READWRITE;
        const DWORD c_re = PAGE_EXECUTE_READ;
        DWORD mode;
#else
        const int c_rw = PROT_READ | PROT_WRITE;
        const int c_rwe = PROT_READ | PROT_WRITE | PROT_EXEC;
        const int c_re = PROT_READ | PROT_EXEC;
        int mode;
#endif
        switch (protectMode) {
        case PROTECT_RW: mode = c_rw; break;
        case PROTECT_RWE: mode = c_rwe; break;
        case PROTECT_RE: mode = c_re; break;
        default:
            return false;
        }
#if defined(_WIN32)
        DWORD oldProtect;
        return VirtualProtect(const_cast<void*>(addr), size, mode, &oldProtect) != 0;
#elif defined(__GNUC__)
        size_t pageSize = sysconf(_SC_PAGESIZE);
        size_t iaddr = reinterpret_cast<size_t>(addr);
        size_t roundAddr = iaddr & ~(pageSize - static_cast<size_t>(1));
#ifndef NDEBUG
        if (pageSize != 4096) fprintf(stderr, "large page(%zd) is used. not tested enough.\n", pageSize);
#endif
        return mprotect(reinterpret_cast<void*>(roundAddr), size + (iaddr - roundAddr), mode) == 0;
#else
        return true;
#endif
    }
    /**
        get aligned memory pointer
        @param addr [in] address
        @param alignedSize [in] power of two
        @return aligned addr by alingedSize
    */
    static inline uint8 *getAlignedAddress(uint8 *addr, size_t alignedSize = 16)
    {
        return reinterpret_cast<uint8*>((reinterpret_cast<size_t>(addr) + alignedSize - 1) & ~(alignedSize - static_cast<size_t>(1)));
    }
};

class Address : public Operand {
public:
    enum Mode {
        M_ModRM,
        M_64bitDisp,
        M_rip,
        M_ripAddr
    };
    Address(uint32 sizeBit, bool broadcast, const RegExp& e)
        : Operand(0, MEM, sizeBit), e_(e), label_(0), mode_(M_ModRM), broadcast_(broadcast)
    {
        e_.verify();
    }
#ifdef XBYAK64
    explicit Address(size_t disp)
        : Operand(0, MEM, 64), e_(disp), label_(0), mode_(M_64bitDisp), broadcast_(false){ }
    Address(uint32 sizeBit, bool broadcast, const RegRip& addr)
        : Operand(0, MEM, sizeBit), e_(addr.disp_), label_(addr.label_), mode_(addr.isAddr_ ? M_ripAddr : M_rip), broadcast_(broadcast) { }
#endif
    RegExp getRegExp(bool optimize = true) const
    {
        return optimize ? e_.optimize() : e_;
    }
    Mode getMode() const { return mode_; }
    bool is32bit() const { return e_.getBase().getBit() == 32 || e_.getIndex().getBit() == 32; }
    bool isOnlyDisp() const { return !e_.getBase().getBit() && !e_.getIndex().getBit(); } // for mov eax
    size_t getDisp() const { return e_.getDisp(); }
    uint8 getRex() const
    {
        if (mode_ != M_ModRM) return 0;
        return getRegExp().getRex();
    }
    bool is64bitDisp() const { return mode_ == M_64bitDisp; } // for moffset
    bool isBroadcast() const { return broadcast_; }
    const Label* getLabel() const { return label_; }
    bool operator==(const Address& rhs) const
    {
        return getBit() == rhs.getBit() && e_ == rhs.e_ && label_ == rhs.label_ && mode_ == rhs.mode_ && broadcast_ == rhs.broadcast_;
    }
    bool operator!=(const Address& rhs) const { return !operator==(rhs); }
    bool isVsib() const { return e_.isVsib(); }
private:
    RegExp e_;
    const Label* label_;
    Mode mode_;
    bool broadcast_;
};

inline const Address& Operand::getAddress() const
{
    assert(isMEM());
    return static_cast<const Address&>(*this);
}

inline bool Operand::operator==(const Operand& rhs) const
{
    if (isMEM() && rhs.isMEM()) return this->getAddress() == rhs.getAddress();
    return isEqualIfNotInherited(rhs);
}

class AddressFrame {
    void operator=(const AddressFrame&);
    AddressFrame(const AddressFrame&);
public:
    const uint32 bit_;
    const bool broadcast_;
    explicit AddressFrame(uint32 bit, bool broadcast = false) : bit_(bit), broadcast_(broadcast) { }
    Address operator[](const RegExp& e) const
    {
        return Address(bit_, broadcast_, e);
    }
    Address operator[](const void *disp) const
    {
        return Address(bit_, broadcast_, RegExp(reinterpret_cast<size_t>(disp)));
    }
#ifdef XBYAK64
    Address operator[](uint64 disp) const { return Address(disp); }
    Address operator[](const RegRip& addr) const { return Address(bit_, broadcast_, addr); }
#endif
};

struct JmpLabel {
    size_t endOfJmp; /* offset from top to the end address of jmp */
    int jmpSize;
    inner::LabelMode mode;
    size_t disp; // disp for [rip + disp]
    explicit JmpLabel(size_t endOfJmp = 0, int jmpSize = 0, inner::LabelMode mode = inner::LasIs, size_t disp = 0)
        : endOfJmp(endOfJmp), jmpSize(jmpSize), mode(mode), disp(disp)
    {
    }
};

class LabelManager;

class Label {
    mutable LabelManager *mgr;
    mutable int id;
    friend class LabelManager;
public:
    Label() : mgr(0), id(0) {}
    Label(const Label& rhs);
    Label& operator=(const Label& rhs);
    ~Label();
    int getId() const { return id; }
    const uint8 *getAddress() const;

    // backward compatibility
    static inline std::string toStr(int num)
    {
        char buf[16];
#if defined(_MSC_VER) && (_MSC_VER < 1900)
        _snprintf_s
#else
        snprintf
#endif
        (buf, sizeof(buf), ".%08x", num);
        return buf;
    }
};

class LabelManager {
    // for string label
    struct SlabelVal {
        size_t offset;
        SlabelVal(size_t offset) : offset(offset) {}
    };
    typedef XBYAK_STD_UNORDERED_MAP<std::string, SlabelVal> SlabelDefList;
    typedef XBYAK_STD_UNORDERED_MULTIMAP<std::string, const JmpLabel> SlabelUndefList;
    struct SlabelState {
        SlabelDefList defList;
        SlabelUndefList undefList;
    };
    typedef std::list<SlabelState> StateList;
    // for Label class
    struct ClabelVal {
        ClabelVal(size_t offset = 0) : offset(offset), refCount(1) {}
        size_t offset;
        int refCount;
    };
    typedef XBYAK_STD_UNORDERED_MAP<int, ClabelVal> ClabelDefList;
    typedef XBYAK_STD_UNORDERED_MULTIMAP<int, const JmpLabel> ClabelUndefList;

    CodeArray *base_;
    // global : stateList_.front(), local : stateList_.back()
    StateList stateList_;
    mutable int labelId_;
    ClabelDefList clabelDefList_;
    ClabelUndefList clabelUndefList_;

    int getId(const Label& label) const
    {
        if (label.id == 0) label.id = labelId_++;
        return label.id;
    }
    template<class DefList, class UndefList, class T>
    void define_inner(DefList& defList, UndefList& undefList, const T& labelId, size_t addrOffset)
    {
        // add label
        typename DefList::value_type item(labelId, addrOffset);
        std::pair<typename DefList::iterator, bool> ret = defList.insert(item);
        if (!ret.second) throw Error(ERR_LABEL_IS_REDEFINED);
        // search undefined label
        for (;;) {
            typename UndefList::iterator itr = undefList.find(labelId);
            if (itr == undefList.end()) break;
            const JmpLabel *jmp = &itr->second;
            const size_t offset = jmp->endOfJmp - jmp->jmpSize;
            size_t disp;
            if (jmp->mode == inner::LaddTop) {
                disp = addrOffset;
            } else if (jmp->mode == inner::Labs) {
                disp = size_t(base_->getCurr());
            } else {
                disp = addrOffset - jmp->endOfJmp + jmp->disp;
#ifdef XBYAK64
                if (jmp->jmpSize <= 4 && !inner::IsInInt32(disp)) throw Error(ERR_OFFSET_IS_TOO_BIG);
#endif
                if (jmp->jmpSize == 1 && !inner::IsInDisp8((uint32)disp)) throw Error(ERR_LABEL_IS_TOO_FAR);
            }
            if (base_->isAutoGrow()) {
                base_->save(offset, disp, jmp->jmpSize, jmp->mode);
            } else {
                base_->rewrite(offset, disp, jmp->jmpSize);
            }
            undefList.erase(itr);
        }
    }
    template<class DefList, class T>
    bool getOffset_inner(const DefList& defList, size_t *offset, const T& label) const
    {
        typename DefList::const_iterator i = defList.find(label);
        if (i == defList.end()) return false;
        *offset = i->second.offset;
        return true;
    }
    friend class Label;
    void incRefCount(int id) { clabelDefList_[id].refCount++; }
    void decRefCount(int id)
    {
        ClabelDefList::iterator i = clabelDefList_.find(id);
        if (i == clabelDefList_.end()) return;
        if (i->second.refCount == 1) {
            clabelDefList_.erase(id);
        } else {
            --i->second.refCount;
        }
    }
    template<class T>
    bool hasUndefinedLabel_inner(const T& list) const
    {
#ifndef NDEBUG
        for (typename T::const_iterator i = list.begin(); i != list.end(); ++i) {
            std::cerr << "undefined label:" << i->first << std::endl;
        }
#endif
        return !list.empty();
    }
public:
    LabelManager()
    {
        reset();
    }
    void reset()
    {
        base_ = 0;
        labelId_ = 1;
        stateList_.clear();
        stateList_.push_back(SlabelState());
        stateList_.push_back(SlabelState());
        clabelDefList_.clear();
        clabelUndefList_.clear();
    }
    void enterLocal()
    {
        stateList_.push_back(SlabelState());
    }
    void leaveLocal()
    {
        if (stateList_.size() <= 2) throw Error(ERR_UNDER_LOCAL_LABEL);
        if (hasUndefinedLabel_inner(stateList_.back().undefList)) throw Error(ERR_LABEL_IS_NOT_FOUND);
        stateList_.pop_back();
    }
    void set(CodeArray *base) { base_ = base; }
    void defineSlabel(std::string label)
    {
        if (label == "@b" || label == "@f") throw Error(ERR_BAD_LABEL_STR);
        if (label == "@@") {
            SlabelDefList& defList = stateList_.front().defList;
            SlabelDefList::iterator i = defList.find("@f");
            if (i != defList.end()) {
                defList.erase(i);
                label = "@b";
            } else {
                i = defList.find("@b");
                if (i != defList.end()) {
                    defList.erase(i);
                }
                label = "@f";
            }
        }
        SlabelState& st = *label.c_str() == '.' ? stateList_.back() : stateList_.front();
        define_inner(st.defList, st.undefList, label, base_->getSize());
    }
    void defineClabel(const Label& label)
    {
        define_inner(clabelDefList_, clabelUndefList_, getId(label), base_->getSize());
        label.mgr = this;
    }
    void assign(Label& dst, const Label& src)
    {
        ClabelDefList::const_iterator i = clabelDefList_.find(src.id);
        if (i == clabelDefList_.end()) throw Error(ERR_LABEL_ISNOT_SET_BY_L);
        define_inner(clabelDefList_, clabelUndefList_, dst.id, i->second.offset);
        dst.mgr = this;
    }
    bool getOffset(size_t *offset, std::string& label) const
    {
        const SlabelDefList& defList = stateList_.front().defList;
        if (label == "@b") {
            if (defList.find("@f") != defList.end()) {
                label = "@f";
            } else if (defList.find("@b") == defList.end()) {
                throw Error(ERR_LABEL_IS_NOT_FOUND);
            }
        } else if (label == "@f") {
            if (defList.find("@f") != defList.end()) {
                label = "@b";
            }
        }
        const SlabelState& st = *label.c_str() == '.' ? stateList_.back() : stateList_.front();
        return getOffset_inner(st.defList, offset, label);
    }
    bool getOffset(size_t *offset, const Label& label) const
    {
        return getOffset_inner(clabelDefList_, offset, getId(label));
    }
    void addUndefinedLabel(const std::string& label, const JmpLabel& jmp)
    {
        SlabelState& st = *label.c_str() == '.' ? stateList_.back() : stateList_.front();
        st.undefList.insert(SlabelUndefList::value_type(label, jmp));
    }
    void addUndefinedLabel(const Label& label, const JmpLabel& jmp)
    {
        clabelUndefList_.insert(ClabelUndefList::value_type(label.id, jmp));
    }
    bool hasUndefSlabel() const
    {
        for (StateList::const_iterator i = stateList_.begin(), ie = stateList_.end(); i != ie; ++i) {
            if (hasUndefinedLabel_inner(i->undefList)) return true;
        }
        return false;
    }
    bool hasUndefClabel() const { return hasUndefinedLabel_inner(clabelUndefList_); }
    const uint8 *getCode() const { return base_->getCode(); }
    bool isReady() const { return !base_->isAutoGrow() || base_->isCalledCalcJmpAddress(); }
};

inline Label::Label(const Label& rhs)
{
    id = rhs.id;
    mgr = rhs.mgr;
    if (mgr) mgr->incRefCount(id);
}
inline Label& Label::operator=(const Label& rhs)
{
    if (id) throw Error(ERR_LABEL_IS_ALREADY_SET_BY_L);
    id = rhs.id;
    mgr = rhs.mgr;
    if (mgr) mgr->incRefCount(id);
    return *this;
}
inline Label::~Label()
{
    if (id && mgr) mgr->decRefCount(id);
}
inline const uint8* Label::getAddress() const
{
    if (mgr == 0 || !mgr->isReady()) return 0;
    size_t offset;
    if (!mgr->getOffset(&offset, *this)) return 0;
    return mgr->getCode() + offset;
}

class CodeGenerator : public CodeArray {
public:
    enum LabelType {
        T_SHORT,
        T_NEAR,
        T_AUTO // T_SHORT if possible
    };
private:
    CodeGenerator operator=(const CodeGenerator&); // don't call
#ifdef XBYAK64
    enum { i32e = 32 | 64, BIT = 64 };
    static const size_t dummyAddr = (size_t(0x11223344) << 32) | 55667788;
    typedef Reg64 NativeReg;
#else
    enum { i32e = 32, BIT = 32 };
    static const size_t dummyAddr = 0x12345678;
    typedef Reg32 NativeReg;
#endif
    // (XMM, XMM|MEM)
    static inline bool isXMM_XMMorMEM(const Operand& op1, const Operand& op2)
    {
        return op1.isXMM() && (op2.isXMM() || op2.isMEM());
    }
    // (MMX, MMX|MEM) or (XMM, XMM|MEM)
    static inline bool isXMMorMMX_MEM(const Operand& op1, const Operand& op2)
    {
        return (op1.isMMX() && (op2.isMMX() || op2.isMEM())) || isXMM_XMMorMEM(op1, op2);
    }
    // (XMM, MMX|MEM)
    static inline bool isXMM_MMXorMEM(const Operand& op1, const Operand& op2)
    {
        return op1.isXMM() && (op2.isMMX() || op2.isMEM());
    }
    // (MMX, XMM|MEM)
    static inline bool isMMX_XMMorMEM(const Operand& op1, const Operand& op2)
    {
        return op1.isMMX() && (op2.isXMM() || op2.isMEM());
    }
    // (XMM, REG32|MEM)
    static inline bool isXMM_REG32orMEM(const Operand& op1, const Operand& op2)
    {
        return op1.isXMM() && (op2.isREG(i32e) || op2.isMEM());
    }
    // (REG32, XMM|MEM)
    static inline bool isREG32_XMMorMEM(const Operand& op1, const Operand& op2)
    {
        return op1.isREG(i32e) && (op2.isXMM() || op2.isMEM());
    }
    // (REG32, REG32|MEM)
    static inline bool isREG32_REG32orMEM(const Operand& op1, const Operand& op2)
    {
        return op1.isREG(i32e) && ((op2.isREG(i32e) && op1.getBit() == op2.getBit()) || op2.isMEM());
    }
    void rex(const Operand& op1, const Operand& op2 = Operand())
    {
        uint8 rex = 0;
        const Operand *p1 = &op1, *p2 = &op2;
        if (p1->isMEM()) std::swap(p1, p2);
        if (p1->isMEM()) throw Error(ERR_BAD_COMBINATION);
        if (p2->isMEM()) {
            const Address& addr = p2->getAddress();
            if (BIT == 64 && addr.is32bit()) db(0x67);
            rex = addr.getRex() | p1->getReg().getRex();
        } else {
            // ModRM(reg, base);
            rex = op2.getReg().getRex(op1.getReg());
        }
        // except movsx(16bit, 32/64bit)
        if ((op1.isBit(16) && !op2.isBit(i32e)) || (op2.isBit(16) && !op1.isBit(i32e))) db(0x66);
        if (rex) db(rex);
    }
    enum AVXtype {
        // low 3 bit
        T_N1 = 1,
        T_N2 = 2,
        T_N4 = 3,
        T_N8 = 4,
        T_N16 = 5,
        T_N32 = 6,
        T_NX_MASK = 7,
        //
        T_N_VL = 1 << 3, // N * (1, 2, 4) for VL
        T_DUP = 1 << 4, // N = (8, 32, 64)
        T_66 = 1 << 5,
        T_F3 = 1 << 6,
        T_F2 = 1 << 7,
        T_0F = 1 << 8,
        T_0F38 = 1 << 9,
        T_0F3A = 1 << 10,
        T_L0 = 1 << 11,
        T_L1 = 1 << 12,
        T_W0 = 1 << 13,
        T_W1 = 1 << 14,
        T_EW0 = 1 << 15,
        T_EW1 = 1 << 16,
        T_YMM = 1 << 17, // support YMM, ZMM
        T_EVEX = 1 << 18,
        T_ER_X = 1 << 19, // xmm{er}
        T_ER_Y = 1 << 20, // ymm{er}
        T_ER_Z = 1 << 21, // zmm{er}
        T_SAE_X = 1 << 22, // xmm{sae}
        T_SAE_Y = 1 << 23, // ymm{sae}
        T_SAE_Z = 1 << 24, // zmm{sae}
        T_MUST_EVEX = 1 << 25, // contains T_EVEX
        T_B32 = 1 << 26, // m32bcst
        T_B64 = 1 << 27, // m64bcst
        T_M_K = 1 << 28, // mem{k}
        T_VSIB = 1 << 29,
        T_MEM_EVEX = 1 << 30, // use evex if mem
        T_XXX
    };
    void vex(const Reg& reg, const Reg& base, const Operand *v, int type, int code, bool x = false)
    {
        int w = (type & T_W1) ? 1 : 0;
        bool is256 = (type & T_L1) ? true : (type & T_L0) ? false : reg.isYMM();
        bool r = reg.isExtIdx();
        bool b = base.isExtIdx();
        int idx = v ? v->getIdx() : 0;
        if ((idx | reg.getIdx() | base.getIdx()) >= 16) throw Error(ERR_BAD_COMBINATION);
        uint32 pp = (type & T_66) ? 1 : (type & T_F3) ? 2 : (type & T_F2) ? 3 : 0;
        uint32 vvvv = (((~idx) & 15) << 3) | (is256 ? 4 : 0) | pp;
        if (!b && !x && !w && (type & T_0F)) {
            db(0xC5); db((r ? 0 : 0x80) | vvvv);
        } else {
            uint32 mmmm = (type & T_0F) ? 1 : (type & T_0F38) ? 2 : (type & T_0F3A) ? 3 : 0;
            db(0xC4); db((r ? 0 : 0x80) | (x ? 0 : 0x40) | (b ? 0 : 0x20) | mmmm); db((w << 7) | vvvv);
        }
        db(code);
    }
    void verifySAE(const Reg& r, int type) const
    {
        if (((type & T_SAE_X) && r.isXMM()) || ((type & T_SAE_Y) && r.isYMM()) || ((type & T_SAE_Z) && r.isZMM())) return;
        throw Error(ERR_SAE_IS_INVALID);
    }
    void verifyER(const Reg& r, int type) const
    {
        if (((type & T_ER_X) && r.isXMM()) || ((type & T_ER_Y) && r.isYMM()) || ((type & T_ER_Z) && r.isZMM())) return;
        throw Error(ERR_ER_IS_INVALID);
    }
    // (a, b, c) contains non zero two or three values then err
    int verifyDuplicate(int a, int b, int c, int err)
    {
        int v = a | b | c;
        if ((a > 0 && a != v) + (b > 0 && b != v) + (c > 0 && c != v) > 0) return Error(err);
        return v;
    }
    int evex(const Reg& reg, const Reg& base, const Operand *v, int type, int code, bool x = false, bool b = false, int aaa = 0, uint32 VL = 0, bool Hi16Vidx = false)
    {
        if (!(type & (T_EVEX | T_MUST_EVEX))) throw Error(ERR_EVEX_IS_INVALID);
        int w = (type & T_EW1) ? 1 : 0;
        uint32 mm = (type & T_0F) ? 1 : (type & T_0F38) ? 2 : (type & T_0F3A) ? 3 : 0;
        uint32 pp = (type & T_66) ? 1 : (type & T_F3) ? 2 : (type & T_F2) ? 3 : 0;

        int idx = v ? v->getIdx() : 0;
        uint32 vvvv = ~idx;

        bool R = !reg.isExtIdx();
        bool X = x ? false : !base.isExtIdx2();
        bool B = !base.isExtIdx();
        bool Rp = !reg.isExtIdx2();
        int LL;
        int rounding = verifyDuplicate(reg.getRounding(), base.getRounding(), v ? v->getRounding() : 0, ERR_ROUNDING_IS_ALREADY_SET);
        int disp8N = 1;
        if (rounding) {
            if (rounding == EvexModifierRounding::T_SAE) {
                verifySAE(base, type); LL = 0;
            } else {
                verifyER(base, type); LL = rounding - 1;
            }
            b = true;
        } else {
            if (v) VL = (std::max)(VL, v->getBit());
            VL = (std::max)((std::max)(reg.getBit(), base.getBit()), VL);
            LL = (VL == 512) ? 2 : (VL == 256) ? 1 : 0;
            if (b) {
                disp8N = (type & T_B32) ? 4 : 8;
            } else if (type & T_DUP) {
                disp8N = VL == 128 ? 8 : VL == 256 ? 32 : 64;
            } else {
                if ((type & (T_NX_MASK | T_N_VL)) == 0) {
                    type |= T_N16 | T_N_VL; // default
                }
                int low = type & T_NX_MASK;
                if (low > 0) {
                    disp8N = 1 << (low - 1);
                    if (type & T_N_VL) disp8N *= (VL == 512 ? 4 : VL == 256 ? 2 : 1);
                }
            }
        }
        bool Vp = !((v ? v->isExtIdx2() : 0) | Hi16Vidx);
        bool z = reg.hasZero() || base.hasZero() || (v ? v->hasZero() : false);
        if (aaa == 0) aaa = verifyDuplicate(base.getOpmaskIdx(), reg.getOpmaskIdx(), (v ? v->getOpmaskIdx() : 0), ERR_OPMASK_IS_ALREADY_SET);
        db(0x62);
        db((R ? 0x80 : 0) | (X ? 0x40 : 0) | (B ? 0x20 : 0) | (Rp ? 0x10 : 0) | (mm & 3));
        db((w == 1 ? 0x80 : 0) | ((vvvv & 15) << 3) | 4 | (pp & 3));
        db((z ? 0x80 : 0) | ((LL & 3) << 5) | (b ? 0x10 : 0) | (Vp ? 8 : 0) | (aaa & 7));
        db(code);
        return disp8N;
    }
    void setModRM(int mod, int r1, int r2)
    {
        db(static_cast<uint8>((mod << 6) | ((r1 & 7) << 3) | (r2 & 7)));
    }
    void setSIB(const RegExp& e, int reg, int disp8N = 0)
    {
        size_t disp64 = e.getDisp();
#ifdef XBYAK64
        size_t high = disp64 >> 32;
        if (high != 0 && high != 0xFFFFFFFF) throw Error(ERR_OFFSET_IS_TOO_BIG);
#endif
        uint32 disp = static_cast<uint32>(disp64);
        const Reg& base = e.getBase();
        const Reg& index = e.getIndex();
        const int baseIdx = base.getIdx();
        const int baseBit = base.getBit();
        const int indexBit = index.getBit();
        enum {
            mod00 = 0, mod01 = 1, mod10 = 2
        };
        int mod = mod10; // disp32
        if (!baseBit || ((baseIdx & 7) != Operand::EBP && disp == 0)) {
            mod = mod00;
        } else {
            if (disp8N == 0) {
                if (inner::IsInDisp8(disp)) {
                    mod = mod01;
                }
            } else {
                // disp must be casted to signed
                uint32 t = static_cast<uint32>(static_cast<int>(disp) / disp8N);
                if ((disp % disp8N) == 0 && inner::IsInDisp8(t)) {
                    disp = t;
                    mod = mod01;
                }
            }
        }
        const int newBaseIdx = baseBit ? (baseIdx & 7) : Operand::EBP;
        /* ModR/M = [2:3:3] = [Mod:reg/code:R/M] */
        bool hasSIB = indexBit || (baseIdx & 7) == Operand::ESP;
#ifdef XBYAK64
        if (!baseBit && !indexBit) hasSIB = true;
#endif
        if (hasSIB) {
            setModRM(mod, reg, Operand::ESP);
            /* SIB = [2:3:3] = [SS:index:base(=rm)] */
            const int idx = indexBit ? (index.getIdx() & 7) : Operand::ESP;
            const int scale = e.getScale();
            const int SS = (scale == 8) ? 3 : (scale == 4) ? 2 : (scale == 2) ? 1 : 0;
            setModRM(SS, idx, newBaseIdx);
        } else {
            setModRM(mod, reg, newBaseIdx);
        }
        if (mod == mod01) {
            db(disp);
        } else if (mod == mod10 || (mod == mod00 && !baseBit)) {
            dd(disp);
        }
    }
    LabelManager labelMgr_;
    bool isInDisp16(uint32 x) const { return 0xFFFF8000 <= x || x <= 0x7FFF; }
    void opModR(const Reg& reg1, const Reg& reg2, int code0, int code1 = NONE, int code2 = NONE)
    {
        rex(reg2, reg1);
        db(code0 | (reg1.isBit(8) ? 0 : 1)); if (code1 != NONE) db(code1); if (code2 != NONE) db(code2);
        setModRM(3, reg1.getIdx(), reg2.getIdx());
    }
    void opModM(const Address& addr, const Reg& reg, int code0, int code1 = NONE, int code2 = NONE, int immSize = 0)
    {
        if (addr.is64bitDisp()) throw Error(ERR_CANT_USE_64BIT_DISP);
        rex(addr, reg);
        db(code0 | (reg.isBit(8) ? 0 : 1)); if (code1 != NONE) db(code1); if (code2 != NONE) db(code2);
        opAddr(addr, reg.getIdx(), immSize);
    }
    void opMIB(const Address& addr, const Reg& reg, int code0, int code1)
    {
        if (addr.is64bitDisp()) throw Error(ERR_CANT_USE_64BIT_DISP);
        if (addr.getMode() != Address::M_ModRM) throw Error(ERR_INVALID_MIB_ADDRESS);
        if (BIT == 64 && addr.is32bit()) db(0x67);
        const RegExp& regExp = addr.getRegExp(false);
        uint8 rex = regExp.getRex();
        if (rex) db(rex);
        db(code0); db(code1);
        setSIB(regExp, reg.getIdx());
    }
    void makeJmp(uint32 disp, LabelType type, uint8 shortCode, uint8 longCode, uint8 longPref)
    {
        const int shortJmpSize = 2;
        const int longHeaderSize = longPref ? 2 : 1;
        const int longJmpSize = longHeaderSize + 4;
        if (type != T_NEAR && inner::IsInDisp8(disp - shortJmpSize)) {
            db(shortCode); db(disp - shortJmpSize);
        } else {
            if (type == T_SHORT) throw Error(ERR_LABEL_IS_TOO_FAR);
            if (longPref) db(longPref);
            db(longCode); dd(disp - longJmpSize);
        }
    }
    template<class T>
    void opJmp(T& label, LabelType type, uint8 shortCode, uint8 longCode, uint8 longPref)
    {
        if (isAutoGrow() && size_ + 16 >= maxSize_) growMemory(); /* avoid splitting code of jmp */
        size_t offset = 0;
        if (labelMgr_.getOffset(&offset, label)) { /* label exists */
            makeJmp(inner::VerifyInInt32(offset - size_), type, shortCode, longCode, longPref);
        } else {
            int jmpSize = 0;
            if (type == T_NEAR) {
                jmpSize = 4;
                if (longPref) db(longPref);
                db(longCode); dd(0);
            } else {
                jmpSize = 1;
                db(shortCode); db(0);
            }
            JmpLabel jmp(size_, jmpSize, inner::LasIs);
            labelMgr_.addUndefinedLabel(label, jmp);
        }
    }
    void opJmpAbs(const void *addr, LabelType type, uint8 shortCode, uint8 longCode, uint8 longPref = 0)
    {
        if (isAutoGrow()) {
            if (type != T_NEAR) throw Error(ERR_ONLY_T_NEAR_IS_SUPPORTED_IN_AUTO_GROW);
            if (size_ + 16 >= maxSize_) growMemory();
            if (longPref) db(longPref);
            db(longCode);
            dd(0);
            save(size_ - 4, size_t(addr) - size_, 4, inner::Labs);
        } else {
            makeJmp(inner::VerifyInInt32(reinterpret_cast<const uint8*>(addr) - getCurr()), type, shortCode, longCode, longPref);
        }

    }
    // reg is reg field of ModRM
    // immSize is the size for immediate value
    // disp8N = 0(normal), disp8N = 1(force disp32), disp8N = {2, 4, 8} ; compressed displacement
    void opAddr(const Address &addr, int reg, int immSize = 0, int disp8N = 0, bool permitVisb = false)
    {
        if (!permitVisb && addr.isVsib()) throw Error(ERR_BAD_VSIB_ADDRESSING);
        if (addr.getMode() == Address::M_ModRM) {
            setSIB(addr.getRegExp(), reg, disp8N);
        } else if (addr.getMode() == Address::M_rip || addr.getMode() == Address::M_ripAddr) {
            setModRM(0, reg, 5);
            if (addr.getLabel()) { // [rip + Label]
                putL_inner(*addr.getLabel(), true, addr.getDisp() - immSize);
            } else {
                size_t disp = addr.getDisp();
                if (addr.getMode() == Address::M_ripAddr) {
                    if (isAutoGrow()) throw Error(ERR_INVALID_RIP_IN_AUTO_GROW);
                    disp -= (size_t)getCurr() + 4 + immSize;
                }
                dd(inner::VerifyInInt32(disp));
            }
        }
    }
    /* preCode is for SSSE3/SSE4 */
    void opGen(const Operand& reg, const Operand& op, int code, int pref, bool isValid(const Operand&, const Operand&), int imm8 = NONE, int preCode = NONE)
    {
        if (isValid && !isValid(reg, op)) throw Error(ERR_BAD_COMBINATION);
        if (pref != NONE) db(pref);
        if (op.isMEM()) {
            opModM(op.getAddress(), reg.getReg(), 0x0F, preCode, code, (imm8 != NONE) ? 1 : 0);
        } else {
            opModR(reg.getReg(), op.getReg(), 0x0F, preCode, code);
        }
        if (imm8 != NONE) db(imm8);
    }
    void opMMX_IMM(const Mmx& mmx, int imm8, int code, int ext)
    {
        if (mmx.isXMM()) db(0x66);
        opModR(Reg32(ext), mmx, 0x0F, code);
        db(imm8);
    }
    void opMMX(const Mmx& mmx, const Operand& op, int code, int pref = 0x66, int imm8 = NONE, int preCode = NONE)
    {
        opGen(mmx, op, code, mmx.isXMM() ? pref : NONE, isXMMorMMX_MEM, imm8, preCode);
    }
    void opMovXMM(const Operand& op1, const Operand& op2, int code, int pref)
    {
        if (pref != NONE) db(pref);
        if (op1.isXMM() && op2.isMEM()) {
            opModM(op2.getAddress(), op1.getReg(), 0x0F, code);
        } else if (op1.isMEM() && op2.isXMM()) {
            opModM(op1.getAddress(), op2.getReg(), 0x0F, code | 1);
        } else {
            throw Error(ERR_BAD_COMBINATION);
        }
    }
    void opExt(const Operand& op, const Mmx& mmx, int code, int imm, bool hasMMX2 = false)
    {
        if (hasMMX2 && op.isREG(i32e)) { /* pextrw is special */
            if (mmx.isXMM()) db(0x66);
            opModR(op.getReg(), mmx, 0x0F, 0xC5); db(imm);
        } else {
            opGen(mmx, op, code, 0x66, isXMM_REG32orMEM, imm, 0x3A);
        }
    }
    void opR_ModM(const Operand& op, int bit, int ext, int code0, int code1 = NONE, int code2 = NONE, bool disableRex = false, int immSize = 0)
    {
        int opBit = op.getBit();
        if (disableRex && opBit == 64) opBit = 32;
        if (op.isREG(bit)) {
            opModR(Reg(ext, Operand::REG, opBit), op.getReg().changeBit(opBit), code0, code1, code2);
        } else if (op.isMEM()) {
            opModM(op.getAddress(), Reg(ext, Operand::REG, opBit), code0, code1, code2, immSize);
        } else {
            throw Error(ERR_BAD_COMBINATION);
        }
    }
    void opShift(const Operand& op, int imm, int ext)
    {
        verifyMemHasSize(op);
        opR_ModM(op, 0, ext, (0xC0 | ((imm == 1 ? 1 : 0) << 4)), NONE, NONE, false, (imm != 1) ? 1 : 0);
        if (imm != 1) db(imm);
    }
    void opShift(const Operand& op, const Reg8& _cl, int ext)
    {
        if (_cl.getIdx() != Operand::CL) throw Error(ERR_BAD_COMBINATION);
        opR_ModM(op, 0, ext, 0xD2);
    }
    void opModRM(const Operand& op1, const Operand& op2, bool condR, bool condM, int code0, int code1 = NONE, int code2 = NONE, int immSize = 0)
    {
        if (condR) {
            opModR(op1.getReg(), op2.getReg(), code0, code1, code2);
        } else if (condM) {
            opModM(op2.getAddress(), op1.getReg(), code0, code1, code2, immSize);
        } else {
            throw Error(ERR_BAD_COMBINATION);
        }
    }
    void opShxd(const Operand& op, const Reg& reg, uint8 imm, int code, const Reg8 *_cl = 0)
    {
        if (_cl && _cl->getIdx() != Operand::CL) throw Error(ERR_BAD_COMBINATION);
        opModRM(reg, op, (op.isREG(16 | i32e) && op.getBit() == reg.getBit()), op.isMEM() && (reg.isREG(16 | i32e)), 0x0F, code | (_cl ? 1 : 0), NONE, _cl ? 0 : 1);
        if (!_cl) db(imm);
    }
    // (REG, REG|MEM), (MEM, REG)
    void opRM_RM(const Operand& op1, const Operand& op2, int code)
    {
        if (op1.isREG() && op2.isMEM()) {
            opModM(op2.getAddress(), op1.getReg(), code | 2);
        } else {
            opModRM(op2, op1, op1.isREG() && op1.getKind() == op2.getKind(), op1.isMEM() && op2.isREG(), code);
        }
    }
    // (REG|MEM, IMM)
    void opRM_I(const Operand& op, uint32 imm, int code, int ext)
    {
        verifyMemHasSize(op);
        uint32 immBit = inner::IsInDisp8(imm) ? 8 : isInDisp16(imm) ? 16 : 32;
        if (op.isBit(8)) immBit = 8;
        if (op.getBit() < immBit) throw Error(ERR_IMM_IS_TOO_BIG);
        if (op.isBit(32|64) && immBit == 16) immBit = 32; /* don't use MEM16 if 32/64bit mode */
        if (op.isREG() && op.getIdx() == 0 && (op.getBit() == immBit || (op.isBit(64) && immBit == 32))) { // rax, eax, ax, al
            rex(op);
            db(code | 4 | (immBit == 8 ? 0 : 1));
        } else {
            int tmp = immBit < (std::min)(op.getBit(), 32U) ? 2 : 0;
            opR_ModM(op, 0, ext, 0x80 | tmp, NONE, NONE, false, immBit / 8);
        }
        db(imm, immBit / 8);
    }
    void opIncDec(const Operand& op, int code, int ext)
    {
        verifyMemHasSize(op);
#ifndef XBYAK64
        if (op.isREG() && !op.isBit(8)) {
            rex(op); db(code | op.getIdx());
            return;
        }
#endif
        code = 0xFE;
        if (op.isREG()) {
            opModR(Reg(ext, Operand::REG, op.getBit()), op.getReg(), code);
        } else {
            opModM(op.getAddress(), Reg(ext, Operand::REG, op.getBit()), code);
        }
    }
    void opPushPop(const Operand& op, int code, int ext, int alt)
    {
        int bit = op.getBit();
        if (bit == 16 || bit == BIT) {
            if (bit == 16) db(0x66);
            if (op.isREG()) {
                if (op.getReg().getIdx() >= 8) db(0x41);
                db(alt | (op.getIdx() & 7));
                return;
            }
            if (op.isMEM()) {
                opModM(op.getAddress(), Reg(ext, Operand::REG, 32), code);
                return;
            }
        }
        throw Error(ERR_BAD_COMBINATION);
    }
    void verifyMemHasSize(const Operand& op) const
    {
        if (op.isMEM() && op.getBit() == 0) throw Error(ERR_MEM_SIZE_IS_NOT_SPECIFIED);
    }
    /*
        mov(r, imm) = db(imm, mov_imm(r, imm))
    */
    int mov_imm(const Reg& reg, size_t imm)
    {
        int bit = reg.getBit();
        const int idx = reg.getIdx();
        int code = 0xB0 | ((bit == 8 ? 0 : 1) << 3);
        if (bit == 64 && (imm & ~size_t(0xffffffffu)) == 0) {
            rex(Reg32(idx));
            bit = 32;
        } else {
            rex(reg);
            if (bit == 64 && inner::IsInInt32(imm)) {
                db(0xC7);
                code = 0xC0;
                bit = 32;
            }
        }
        db(code | (idx & 7));
        return bit / 8;
    }
    template<class T>
    void putL_inner(T& label, bool relative = false, size_t disp = 0)
    {
        const int jmpSize = relative ? 4 : (int)sizeof(size_t);
        if (isAutoGrow() && size_ + 16 >= maxSize_) growMemory();
        size_t offset = 0;
        if (labelMgr_.getOffset(&offset, label)) {
            if (relative) {
                db(inner::VerifyInInt32(offset + disp - size_ - jmpSize), jmpSize);
            } else if (isAutoGrow()) {
                db(uint64(0), jmpSize);
                save(size_ - jmpSize, offset, jmpSize, inner::LaddTop);
            } else {
                db(size_t(top_) + offset, jmpSize);
            }
            return;
        }
        db(uint64(0), jmpSize);
        JmpLabel jmp(size_, jmpSize, (relative ? inner::LasIs : isAutoGrow() ? inner::LaddTop : inner::Labs), disp);
        labelMgr_.addUndefinedLabel(label, jmp);
    }
    void opMovxx(const Reg& reg, const Operand& op, uint8 code)
    {
        if (op.isBit(32)) throw Error(ERR_BAD_COMBINATION);
        int w = op.isBit(16);
#ifdef XBYAK64
        if (op.isHigh8bit()) throw Error(ERR_BAD_COMBINATION);
#endif
        bool cond = reg.isREG() && (reg.getBit() > op.getBit());
        opModRM(reg, op, cond && op.isREG(), cond && op.isMEM(), 0x0F, code | w);
    }
    void opFpuMem(const Address& addr, uint8 m16, uint8 m32, uint8 m64, uint8 ext, uint8 m64ext)
    {
        if (addr.is64bitDisp()) throw Error(ERR_CANT_USE_64BIT_DISP);
        uint8 code = addr.isBit(16) ? m16 : addr.isBit(32) ? m32 : addr.isBit(64) ? m64 : 0;
        if (!code) throw Error(ERR_BAD_MEM_SIZE);
        if (m64ext && addr.isBit(64)) ext = m64ext;

        rex(addr, st0);
        db(code);
        opAddr(addr, ext);
    }
    // use code1 if reg1 == st0
    // use code2 if reg1 != st0 && reg2 == st0
    void opFpuFpu(const Fpu& reg1, const Fpu& reg2, uint32 code1, uint32 code2)
    {
        uint32 code = reg1.getIdx() == 0 ? code1 : reg2.getIdx() == 0 ? code2 : 0;
        if (!code) throw Error(ERR_BAD_ST_COMBINATION);
        db(uint8(code >> 8));
        db(uint8(code | (reg1.getIdx() | reg2.getIdx())));
    }
    void opFpu(const Fpu& reg, uint8 code1, uint8 code2)
    {
        db(code1); db(code2 | reg.getIdx());
    }
    void opVex(const Reg& r, const Operand *p1, const Operand& op2, int type, int code, int imm8 = NONE)
    {
        if (op2.isMEM()) {
            const Address& addr = op2.getAddress();
            const RegExp& regExp = addr.getRegExp();
            const Reg& base = regExp.getBase();
            const Reg& index = regExp.getIndex();
            if (BIT == 64 && addr.is32bit()) db(0x67);
            int disp8N = 0;
            bool x = index.isExtIdx();
            if ((type & (T_MUST_EVEX|T_MEM_EVEX)) || r.hasEvex() || (p1 && p1->hasEvex()) || addr.isBroadcast() || addr.getOpmaskIdx()) {
                int aaa = addr.getOpmaskIdx();
                if (aaa && !(type & T_M_K)) throw Error(ERR_INVALID_OPMASK_WITH_MEMORY);
                bool b = false;
                if (addr.isBroadcast()) {
                    if (!(type & (T_B32 | T_B64))) throw Error(ERR_INVALID_BROADCAST);
                    b = true;
                }
                int VL = regExp.isVsib() ? index.getBit() : 0;
                disp8N = evex(r, base, p1, type, code, x, b, aaa, VL, index.isExtIdx2());
            } else {
                vex(r, base, p1, type, code, x);
            }
            opAddr(addr, r.getIdx(), (imm8 != NONE) ? 1 : 0, disp8N, (type & T_VSIB) != 0);
        } else {
            const Reg& base = op2.getReg();
            if ((type & T_MUST_EVEX) || r.hasEvex() || (p1 && p1->hasEvex()) || base.hasEvex()) {
                evex(r, base, p1, type, code);
            } else {
                vex(r, base, p1, type, code);
            }
            setModRM(3, r.getIdx(), base.getIdx());
        }
        if (imm8 != NONE) db(imm8);
    }
    // (r, r, r/m) if isR_R_RM
    // (r, r/m, r)
    void opGpr(const Reg32e& r, const Operand& op1, const Operand& op2, int type, uint8 code, bool isR_R_RM, int imm8 = NONE)
    {
        const Operand *p1 = &op1;
        const Operand *p2 = &op2;
        if (!isR_R_RM) std::swap(p1, p2);
        const unsigned int bit = r.getBit();
        if (p1->getBit() != bit || (p2->isREG() && p2->getBit() != bit)) throw Error(ERR_BAD_COMBINATION);
        type |= (bit == 64) ? T_W1 : T_W0;
        opVex(r, p1, *p2, type, code, imm8);
    }
    void opAVX_X_X_XM(const Xmm& x1, const Operand& op1, const Operand& op2, int type, int code0, int imm8 = NONE)
    {
        const Xmm *x2 = static_cast<const Xmm*>(&op1);
        const Operand *op = &op2;
        if (op2.isNone()) { // (x1, op1) -> (x1, x1, op1)
            x2 = &x1;
            op = &op1;
        }
        // (x1, x2, op)
        if (!((x1.isXMM() && x2->isXMM()) || ((type & T_YMM) && ((x1.isYMM() && x2->isYMM()) || (x1.isZMM() && x2->isZMM()))))) throw Error(ERR_BAD_COMBINATION);
        opVex(x1, x2, *op, type, code0, imm8);
    }
    void opAVX_K_X_XM(const Opmask& k, const Xmm& x2, const Operand& op3, int type, int code0, int imm8 = NONE)
    {
        if (!op3.isMEM() && (x2.getKind() != op3.getKind())) throw Error(ERR_BAD_COMBINATION);
        opVex(k, &x2, op3, type, code0, imm8);
    }
    // (x, x/m), (y, x/m256), (z, y/m)
    void checkCvt1(const Operand& x, const Operand& op) const
    {
        if (!op.isMEM() && !(x.is(Operand::XMM | Operand::YMM) && op.isXMM()) && !(x.isZMM() && op.isYMM())) throw Error(ERR_BAD_COMBINATION);
    }
    // (x, x/m), (x, y/m256), (y, z/m)
    void checkCvt2(const Xmm& x, const Operand& op) const
    {
        if (!(x.isXMM() && op.is(Operand::XMM | Operand::YMM | Operand::MEM)) && !(x.isYMM() && op.is(Operand::ZMM | Operand::MEM))) throw Error(ERR_BAD_COMBINATION);
    }
    void opCvt2(const Xmm& x, const Operand& op, int type, int code)
    {
        checkCvt2(x, op);
        Operand::Kind kind = x.isXMM() ? (op.isBit(256) ? Operand::YMM : Operand::XMM) : Operand::ZMM;
        opVex(x.copyAndSetKind(kind), &xm0, op, type, code);
    }
    void opCvt3(const Xmm& x1, const Xmm& x2, const Operand& op, int type, int type64, int type32, uint8 code)
    {
        if (!(x1.isXMM() && x2.isXMM() && (op.isREG(i32e) || op.isMEM()))) throw Error(ERR_BAD_SIZE_OF_REGISTER);
        Xmm x(op.getIdx());
        const Operand *p = op.isREG() ? &x : &op;
        opVex(x1, &x2, *p, type | (op.isBit(64) ? type64 : type32), code);
    }
    const Xmm& cvtIdx0(const Operand& x) const
    {
        return x.isZMM() ? zm0 : x.isYMM() ? ym0 : xm0;
    }
    // support (x, x/m, imm), (y, y/m, imm)
    void opAVX_X_XM_IMM(const Xmm& x, const Operand& op, int type, int code, int imm8 = NONE)
    {
        opAVX_X_X_XM(x, cvtIdx0(x), op, type, code, imm8);
    }
    // QQQ:need to refactor
    void opSp1(const Reg& reg, const Operand& op, uint8 pref, uint8 code0, uint8 code1)
    {
        if (reg.isBit(8)) throw Error(ERR_BAD_SIZE_OF_REGISTER);
        bool is16bit = reg.isREG(16) && (op.isREG(16) || op.isMEM());
        if (!is16bit && !(reg.isREG(i32e) && (op.isREG(reg.getBit()) || op.isMEM()))) throw Error(ERR_BAD_COMBINATION);
        if (is16bit) db(0x66);
        db(pref); opModRM(reg.changeBit(i32e == 32 ? 32 : reg.getBit()), op, op.isREG(), true, code0, code1);
    }
    void opGather(const Xmm& x1, const Address& addr, const Xmm& x2, int type, uint8 code, int mode)
    {
        const RegExp& regExp = addr.getRegExp();
        if (!regExp.isVsib(128 | 256)) throw Error(ERR_BAD_VSIB_ADDRESSING);
        const int y_vx_y = 0;
        const int y_vy_y = 1;
//      const int x_vy_x = 2;
        const bool isAddrYMM = regExp.getIndex().getBit() == 256;
        if (!x1.isXMM() || isAddrYMM || !x2.isXMM()) {
            bool isOK = false;
            if (mode == y_vx_y) {
                isOK = x1.isYMM() && !isAddrYMM && x2.isYMM();
            } else if (mode == y_vy_y) {
                isOK = x1.isYMM() && isAddrYMM && x2.isYMM();
            } else { // x_vy_x
                isOK = !x1.isYMM() && isAddrYMM && !x2.isYMM();
            }
            if (!isOK) throw Error(ERR_BAD_VSIB_ADDRESSING);
        }
        opAVX_X_X_XM(isAddrYMM ? Ymm(x1.getIdx()) : x1, isAddrYMM ? Ymm(x2.getIdx()) : x2, addr, type, code);
    }
    enum {
        xx_yy_zz = 0,
        xx_yx_zy = 1,
        xx_xy_yz = 2
    };
    void checkGather2(const Xmm& x1, const Reg& x2, int mode) const
    {
        if (x1.isXMM() && x2.isXMM()) return;
        switch (mode) {
        case xx_yy_zz: if ((x1.isYMM() && x2.isYMM()) || (x1.isZMM() && x2.isZMM())) return;
            break;
        case xx_yx_zy: if ((x1.isYMM() && x2.isXMM()) || (x1.isZMM() && x2.isYMM())) return;
            break;
        case xx_xy_yz: if ((x1.isXMM() && x2.isYMM()) || (x1.isYMM() && x2.isZMM())) return;
            break;
        }
        throw Error(ERR_BAD_VSIB_ADDRESSING);
    }
    void opGather2(const Xmm& x, const Address& addr, int type, uint8 code, int mode)
    {
        if (x.hasZero()) throw Error(ERR_INVALID_ZERO);
        checkGather2(x, addr.getRegExp().getIndex(), mode);
        opVex(x, 0, addr, type, code);
    }
    /*
        xx_xy_yz ; mode = true
        xx_xy_xz ; mode = false
    */
    void opVmov(const Operand& op, const Xmm& x, int type, uint8 code, bool mode)
    {
        if (mode) {
            if (!op.isMEM() && !((op.isXMM() && x.isXMM()) || (op.isXMM() && x.isYMM()) || (op.isYMM() && x.isZMM())))  throw Error(ERR_BAD_COMBINATION);
        } else {
            if (!op.isMEM() && !op.isXMM()) throw Error(ERR_BAD_COMBINATION);
        }
        opVex(x, 0, op, type, code);
    }
    void opGatherFetch(const Address& addr, const Xmm& x, int type, uint8 code, Operand::Kind kind)
    {
        if (addr.hasZero()) throw Error(ERR_INVALID_ZERO);
        if (addr.getRegExp().getIndex().getKind() != kind) throw Error(ERR_BAD_VSIB_ADDRESSING);
        opVex(x, 0, addr, type, code);
    }
public:
    unsigned int getVersion() const { return VERSION; }
    using CodeArray::db;
    const Mmx mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7;
    const Xmm xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
    const Ymm ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7;
    const Zmm zmm0, zmm1, zmm2, zmm3, zmm4, zmm5, zmm6, zmm7;
    const Xmm &xm0, &xm1, &xm2, &xm3, &xm4, &xm5, &xm6, &xm7;
    const Ymm &ym0, &ym1, &ym2, &ym3, &ym4, &ym5, &ym6, &ym7;
    const Ymm &zm0, &zm1, &zm2, &zm3, &zm4, &zm5, &zm6, &zm7;
    const Reg32 eax, ecx, edx, ebx, esp, ebp, esi, edi;
    const Reg16 ax, cx, dx, bx, sp, bp, si, di;
    const Reg8 al, cl, dl, bl, ah, ch, dh, bh;
    const AddressFrame ptr, byte, word, dword, qword, xword, yword, zword; // xword is same as oword of NASM
    const AddressFrame ptr_b, xword_b, yword_b, zword_b; // broadcast such as {1to2}, {1to4}, {1to8}, {1to16}, {b}
    const Fpu st0, st1, st2, st3, st4, st5, st6, st7;
    const Opmask k0, k1, k2, k3, k4, k5, k6, k7;
    const BoundsReg bnd0, bnd1, bnd2, bnd3;
    const EvexModifierRounding T_sae, T_rn_sae, T_rd_sae, T_ru_sae, T_rz_sae; // {sae}, {rn-sae}, {rd-sae}, {ru-sae}, {rz-sae}
    const EvexModifierZero T_z; // {z}
#ifdef XBYAK64
    const Reg64 rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi, r8, r9, r10, r11, r12, r13, r14, r15;
    const Reg32 r8d, r9d, r10d, r11d, r12d, r13d, r14d, r15d;
    const Reg16 r8w, r9w, r10w, r11w, r12w, r13w, r14w, r15w;
    const Reg8 r8b, r9b, r10b, r11b, r12b, r13b, r14b, r15b;
    const Reg8 spl, bpl, sil, dil;
    const Xmm xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
    const Xmm xmm16, xmm17, xmm18, xmm19, xmm20, xmm21, xmm22, xmm23;
    const Xmm xmm24, xmm25, xmm26, xmm27, xmm28, xmm29, xmm30, xmm31;
    const Ymm ymm8, ymm9, ymm10, ymm11, ymm12, ymm13, ymm14, ymm15;
    const Ymm ymm16, ymm17, ymm18, ymm19, ymm20, ymm21, ymm22, ymm23;
    const Ymm ymm24, ymm25, ymm26, ymm27, ymm28, ymm29, ymm30, ymm31;
    const Zmm zmm8, zmm9, zmm10, zmm11, zmm12, zmm13, zmm14, zmm15;
    const Zmm zmm16, zmm17, zmm18, zmm19, zmm20, zmm21, zmm22, zmm23;
    const Zmm zmm24, zmm25, zmm26, zmm27, zmm28, zmm29, zmm30, zmm31;
    const Xmm &xm8, &xm9, &xm10, &xm11, &xm12, &xm13, &xm14, &xm15; // for my convenience
    const Xmm &xm16, &xm17, &xm18, &xm19, &xm20, &xm21, &xm22, &xm23;
    const Xmm &xm24, &xm25, &xm26, &xm27, &xm28, &xm29, &xm30, &xm31;
    const Ymm &ym8, &ym9, &ym10, &ym11, &ym12, &ym13, &ym14, &ym15;
    const Ymm &ym16, &ym17, &ym18, &ym19, &ym20, &ym21, &ym22, &ym23;
    const Ymm &ym24, &ym25, &ym26, &ym27, &ym28, &ym29, &ym30, &ym31;
    const Zmm &zm8, &zm9, &zm10, &zm11, &zm12, &zm13, &zm14, &zm15;
    const Zmm &zm16, &zm17, &zm18, &zm19, &zm20, &zm21, &zm22, &zm23;
    const Zmm &zm24, &zm25, &zm26, &zm27, &zm28, &zm29, &zm30, &zm31;
    const RegRip rip;
#endif
#ifndef XBYAK_DISABLE_SEGMENT
    const Segment es, cs, ss, ds, fs, gs;
#endif
    void L(const std::string& label) { labelMgr_.defineSlabel(label); }
    void L(const Label& label) { labelMgr_.defineClabel(label); }
    Label L() { Label label; L(label); return label; }
    void inLocalLabel() { labelMgr_.enterLocal(); }
    void outLocalLabel() { labelMgr_.leaveLocal(); }
    /*
        assign src to dst
        require
        dst : does not used by L()
        src : used by L()
    */
    void assignL(Label& dst, const Label& src) { labelMgr_.assign(dst, src); }
    /*
        put address of label to buffer
        @note the put size is 4(32-bit), 8(64-bit)
    */
    void putL(std::string label) { putL_inner(label); }
    void putL(const Label& label) { putL_inner(label); }

    void jmp(const Operand& op) { opR_ModM(op, BIT, 4, 0xFF, NONE, NONE, true); }
    void jmp(std::string label, LabelType type = T_AUTO) { opJmp(label, type, 0xEB, 0xE9, 0); }
    void jmp(const char *label, LabelType type = T_AUTO) { jmp(std::string(label), type); }
    void jmp(const Label& label, LabelType type = T_AUTO) { opJmp(label, type, 0xEB, 0xE9, 0); }
    void jmp(const void *addr, LabelType type = T_AUTO) { opJmpAbs(addr, type, 0xEB, 0xE9); }

    void call(const Operand& op) { opR_ModM(op, 16 | i32e, 2, 0xFF, NONE, NONE, true); }
    // call(string label), not const std::string&
    void call(std::string label) { opJmp(label, T_NEAR, 0, 0xE8, 0); }
    void call(const char *label) { call(std::string(label)); }
    void call(const Label& label) { opJmp(label, T_NEAR, 0, 0xE8, 0); }
    // call(function pointer)
#ifdef XBYAK_VARIADIC_TEMPLATE
    template<class Ret, class... Params>
    void call(Ret(*func)(Params...)) { call(CastTo<const void*>(func)); }
#endif
    void call(const void *addr) { opJmpAbs(addr, T_NEAR, 0, 0xE8); }

    void test(const Operand& op, const Reg& reg)
    {
        opModRM(reg, op, op.isREG() && (op.getKind() == reg.getKind()), op.isMEM(), 0x84);
    }
    void test(const Operand& op, uint32 imm)
    {
        verifyMemHasSize(op);
        int immSize = (std::min)(op.getBit() / 8, 4U);
        if (op.isREG() && op.getIdx() == 0) { // al, ax, eax
            rex(op);
            db(0xA8 | (op.isBit(8) ? 0 : 1));
        } else {
            opR_ModM(op, 0, 0, 0xF6, NONE, NONE, false, immSize);
        }
        db(imm, immSize);
    }
    void imul(const Reg& reg, const Operand& op)
    {
        opModRM(reg, op, op.isREG() && (reg.getKind() == op.getKind()), op.isMEM(), 0x0F, 0xAF);
    }
    void imul(const Reg& reg, const Operand& op, int imm)
    {
        int s = inner::IsInDisp8(imm) ? 1 : 0;
        int immSize = s ? 1 : reg.isREG(16) ? 2 : 4;
        opModRM(reg, op, op.isREG() && (reg.getKind() == op.getKind()), op.isMEM(), 0x69 | (s << 1), NONE, NONE, immSize);
        db(imm, immSize);
    }
    void push(const Operand& op) { opPushPop(op, 0xFF, 6, 0x50); }
    void pop(const Operand& op) { opPushPop(op, 0x8F, 0, 0x58); }
    void push(const AddressFrame& af, uint32 imm)
    {
        if (af.bit_ == 8 && inner::IsInDisp8(imm)) {
            db(0x6A); db(imm);
        } else if (af.bit_ == 16 && isInDisp16(imm)) {
            db(0x66); db(0x68); dw(imm);
        } else {
            db(0x68); dd(imm);
        }
    }
    /* use "push(word, 4)" if you want "push word 4" */
    void push(uint32 imm)
    {
        if (inner::IsInDisp8(imm)) {
            push(byte, imm);
        } else {
            push(dword, imm);
        }
    }
    void mov(const Operand& reg1, const Operand& reg2)
    {
        const Reg *reg = 0;
        const Address *addr = 0;
        uint8 code = 0;
        if (reg1.isREG() && reg1.getIdx() == 0 && reg2.isMEM()) { // mov eax|ax|al, [disp]
            reg = &reg1.getReg();
            addr= &reg2.getAddress();
            code = 0xA0;
        } else
        if (reg1.isMEM() && reg2.isREG() && reg2.getIdx() == 0) { // mov [disp], eax|ax|al
            reg = &reg2.getReg();
            addr= &reg1.getAddress();
            code = 0xA2;
        }
#ifdef XBYAK64
        if (addr && addr->is64bitDisp()) {
            if (code) {
                rex(*reg);
                db(reg1.isREG(8) ? 0xA0 : reg1.isREG() ? 0xA1 : reg2.isREG(8) ? 0xA2 : 0xA3);
                db(addr->getDisp(), 8);
            } else {
                throw Error(ERR_BAD_COMBINATION);
            }
        } else
#else
        if (code && addr->isOnlyDisp()) {
            rex(*reg, *addr);
            db(code | (reg->isBit(8) ? 0 : 1));
            dd(static_cast<uint32>(addr->getDisp()));
        } else
#endif
        {
            opRM_RM(reg1, reg2, 0x88);
        }
    }
    void mov(const Operand& op, size_t imm)
    {
        if (op.isREG()) {
            const int size = mov_imm(op.getReg(), imm);
            db(imm, size);
        } else if (op.isMEM()) {
            verifyMemHasSize(op);
            int immSize = op.getBit() / 8;
            if (immSize <= 4) {
                sint64 s = sint64(imm) >> (immSize * 8);
                if (s != 0 && s != -1) throw Error(ERR_IMM_IS_TOO_BIG);
            } else {
                if (!inner::IsInInt32(imm)) throw Error(ERR_IMM_IS_TOO_BIG);
                immSize = 4;
            }
            opModM(op.getAddress(), Reg(0, Operand::REG, op.getBit()), 0xC6, NONE, NONE, immSize);
            db(static_cast<uint32>(imm), immSize);
        } else {
            throw Error(ERR_BAD_COMBINATION);
        }
    }
    void mov(const NativeReg& reg, const char *label) // can't use std::string
    {
        if (label == 0) {
            mov(static_cast<const Operand&>(reg), 0); // call imm
            return;
        }
        mov_imm(reg, dummyAddr);
        putL(label);
    }
    void mov(const NativeReg& reg, const Label& label)
    {
        mov_imm(reg, dummyAddr);
        putL(label);
    }
    void xchg(const Operand& op1, const Operand& op2)
    {
        const Operand *p1 = &op1, *p2 = &op2;
        if (p1->isMEM() || (p2->isREG(16 | i32e) && p2->getIdx() == 0)) {
            p1 = &op2; p2 = &op1;
        }
        if (p1->isMEM()) throw Error(ERR_BAD_COMBINATION);
        if (p2->isREG() && (p1->isREG(16 | i32e) && p1->getIdx() == 0)
#ifdef XBYAK64
            && (p2->getIdx() != 0 || !p1->isREG(32))
#endif
        ) {
            rex(*p2, *p1); db(0x90 | (p2->getIdx() & 7));
            return;
        }
        opModRM(*p1, *p2, (p1->isREG() && p2->isREG() && (p1->getBit() == p2->getBit())), p2->isMEM(), 0x86 | (p1->isBit(8) ? 0 : 1));
    }

#ifndef XBYAK_DISABLE_SEGMENT
    void push(const Segment& seg)
    {
        switch (seg.getIdx()) {
        case Segment::es: db(0x06); break;
        case Segment::cs: db(0x0E); break;
        case Segment::ss: db(0x16); break;
        case Segment::ds: db(0x1E); break;
        case Segment::fs: db(0x0F); db(0xA0); break;
        case Segment::gs: db(0x0F); db(0xA8); break;
        default:
            assert(0);
        }
    }
    void pop(const Segment& seg)
    {
        switch (seg.getIdx()) {
        case Segment::es: db(0x07); break;
        case Segment::cs: throw Error(ERR_BAD_COMBINATION);
        case Segment::ss: db(0x17); break;
        case Segment::ds: db(0x1F); break;
        case Segment::fs: db(0x0F); db(0xA1); break;
        case Segment::gs: db(0x0F); db(0xA9); break;
        default:
            assert(0);
        }
    }
    void putSeg(const Segment& seg)
    {
        switch (seg.getIdx()) {
        case Segment::es: db(0x2E); break;
        case Segment::cs: db(0x36); break;
        case Segment::ss: db(0x3E); break;
        case Segment::ds: db(0x26); break;
        case Segment::fs: db(0x64); break;
        case Segment::gs: db(0x65); break;
        default:
            assert(0);
        }
    }
    void mov(const Operand& op, const Segment& seg)
    {
        opModRM(Reg8(seg.getIdx()), op, op.isREG(16|i32e), op.isMEM(), 0x8C);
    }
    void mov(const Segment& seg, const Operand& op)
    {
        opModRM(Reg8(seg.getIdx()), op.isREG(16|i32e) ? static_cast<const Operand&>(op.getReg().cvt32()) : op, op.isREG(16|i32e), op.isMEM(), 0x8E);
    }
#endif

    enum { NONE = 256 };
    // constructor
    CodeGenerator(size_t maxSize = DEFAULT_MAX_CODE_SIZE, void *userPtr = 0, Allocator *allocator = 0)
        : CodeArray(maxSize, userPtr, allocator)
        , mm0(0), mm1(1), mm2(2), mm3(3), mm4(4), mm5(5), mm6(6), mm7(7)
        , xmm0(0), xmm1(1), xmm2(2), xmm3(3), xmm4(4), xmm5(5), xmm6(6), xmm7(7)
        , ymm0(0), ymm1(1), ymm2(2), ymm3(3), ymm4(4), ymm5(5), ymm6(6), ymm7(7)
        , zmm0(0), zmm1(1), zmm2(2), zmm3(3), zmm4(4), zmm5(5), zmm6(6), zmm7(7)
        // for my convenience
        , xm0(xmm0), xm1(xmm1), xm2(xmm2), xm3(xmm3), xm4(xmm4), xm5(xmm5), xm6(xmm6), xm7(xmm7)
        , ym0(ymm0), ym1(ymm1), ym2(ymm2), ym3(ymm3), ym4(ymm4), ym5(ymm5), ym6(ymm6), ym7(ymm7)
        , zm0(zmm0), zm1(zmm1), zm2(zmm2), zm3(zmm3), zm4(zmm4), zm5(zmm5), zm6(zmm6), zm7(zmm7)

        , eax(Operand::EAX), ecx(Operand::ECX), edx(Operand::EDX), ebx(Operand::EBX), esp(Operand::ESP), ebp(Operand::EBP), esi(Operand::ESI), edi(Operand::EDI)
        , ax(Operand::AX), cx(Operand::CX), dx(Operand::DX), bx(Operand::BX), sp(Operand::SP), bp(Operand::BP), si(Operand::SI), di(Operand::DI)
        , al(Operand::AL), cl(Operand::CL), dl(Operand::DL), bl(Operand::BL), ah(Operand::AH), ch(Operand::CH), dh(Operand::DH), bh(Operand::BH)
        , ptr(0), byte(8), word(16), dword(32), qword(64), xword(128), yword(256), zword(512)
        , ptr_b(0, true), xword_b(128, true), yword_b(256, true), zword_b(512, true)
        , st0(0), st1(1), st2(2), st3(3), st4(4), st5(5), st6(6), st7(7)
        , k0(0), k1(1), k2(2), k3(3), k4(4), k5(5), k6(6), k7(7)
        , bnd0(0), bnd1(1), bnd2(2), bnd3(3)
        , T_sae(EvexModifierRounding::T_SAE), T_rn_sae(EvexModifierRounding::T_RN_SAE), T_rd_sae(EvexModifierRounding::T_RD_SAE), T_ru_sae(EvexModifierRounding::T_RU_SAE), T_rz_sae(EvexModifierRounding::T_RZ_SAE)
        , T_z()
#ifdef XBYAK64
        , rax(Operand::RAX), rcx(Operand::RCX), rdx(Operand::RDX), rbx(Operand::RBX), rsp(Operand::RSP), rbp(Operand::RBP), rsi(Operand::RSI), rdi(Operand::RDI), r8(Operand::R8), r9(Operand::R9), r10(Operand::R10), r11(Operand::R11), r12(Operand::R12), r13(Operand::R13), r14(Operand::R14), r15(Operand::R15)
        , r8d(8), r9d(9), r10d(10), r11d(11), r12d(12), r13d(13), r14d(14), r15d(15)
        , r8w(8), r9w(9), r10w(10), r11w(11), r12w(12), r13w(13), r14w(14), r15w(15)
        , r8b(8), r9b(9), r10b(10), r11b(11), r12b(12), r13b(13), r14b(14), r15b(15)
        , spl(Operand::SPL, true), bpl(Operand::BPL, true), sil(Operand::SIL, true), dil(Operand::DIL, true)
        , xmm8(8), xmm9(9), xmm10(10), xmm11(11), xmm12(12), xmm13(13), xmm14(14), xmm15(15)
        , xmm16(16), xmm17(17), xmm18(18), xmm19(19), xmm20(20), xmm21(21), xmm22(22), xmm23(23)
        , xmm24(24), xmm25(25), xmm26(26), xmm27(27), xmm28(28), xmm29(29), xmm30(30), xmm31(31)
        , ymm8(8), ymm9(9), ymm10(10), ymm11(11), ymm12(12), ymm13(13), ymm14(14), ymm15(15)
        , ymm16(16), ymm17(17), ymm18(18), ymm19(19), ymm20(20), ymm21(21), ymm22(22), ymm23(23)
        , ymm24(24), ymm25(25), ymm26(26), ymm27(27), ymm28(28), ymm29(29), ymm30(30), ymm31(31)
        , zmm8(8), zmm9(9), zmm10(10), zmm11(11), zmm12(12), zmm13(13), zmm14(14), zmm15(15)
        , zmm16(16), zmm17(17), zmm18(18), zmm19(19), zmm20(20), zmm21(21), zmm22(22), zmm23(23)
        , zmm24(24), zmm25(25), zmm26(26), zmm27(27), zmm28(28), zmm29(29), zmm30(30), zmm31(31)
        // for my convenience
        , xm8(xmm8), xm9(xmm9), xm10(xmm10), xm11(xmm11), xm12(xmm12), xm13(xmm13), xm14(xmm14), xm15(xmm15)
        , xm16(xmm16), xm17(xmm17), xm18(xmm18), xm19(xmm19), xm20(xmm20), xm21(xmm21), xm22(xmm22), xm23(xmm23)
        , xm24(xmm24), xm25(xmm25), xm26(xmm26), xm27(xmm27), xm28(xmm28), xm29(xmm29), xm30(xmm30), xm31(xmm31)
        , ym8(ymm8), ym9(ymm9), ym10(ymm10), ym11(ymm11), ym12(ymm12), ym13(ymm13), ym14(ymm14), ym15(ymm15)
        , ym16(ymm16), ym17(ymm17), ym18(ymm18), ym19(ymm19), ym20(ymm20), ym21(ymm21), ym22(ymm22), ym23(ymm23)
        , ym24(ymm24), ym25(ymm25), ym26(ymm26), ym27(ymm27), ym28(ymm28), ym29(ymm29), ym30(ymm30), ym31(ymm31)
        , zm8(zmm8), zm9(zmm9), zm10(zmm10), zm11(zmm11), zm12(zmm12), zm13(zmm13), zm14(zmm14), zm15(zmm15)
        , zm16(zmm16), zm17(zmm17), zm18(zmm18), zm19(zmm19), zm20(zmm20), zm21(zmm21), zm22(zmm22), zm23(zmm23)
        , zm24(zmm24), zm25(zmm25), zm26(zmm26), zm27(zmm27), zm28(zmm28), zm29(zmm29), zm30(zmm30), zm31(zmm31)
        , rip()
#endif
#ifndef XBYAK_DISABLE_SEGMENT
        , es(Segment::es), cs(Segment::cs), ss(Segment::ss), ds(Segment::ds), fs(Segment::fs), gs(Segment::gs)
#endif
    {
        labelMgr_.set(this);
    }
    void reset()
    {
        resetSize();
        labelMgr_.reset();
        labelMgr_.set(this);
    }
    bool hasUndefinedLabel() const { return labelMgr_.hasUndefSlabel() || labelMgr_.hasUndefClabel(); }
    /*
        MUST call ready() to complete generating code if you use AutoGrow mode.
        It is not necessary for the other mode if hasUndefinedLabel() is true.
    */
    void ready(ProtectMode mode = PROTECT_RWE)
    {
        if (hasUndefinedLabel()) throw Error(ERR_LABEL_IS_NOT_FOUND);
        if (isAutoGrow()) {
            calcJmpAddress();
            if (useProtect()) setProtectMode(mode);
        }
    }
    // set read/exec
    void readyRE() { return ready(PROTECT_RE); }
#ifdef XBYAK_TEST
    void dump(bool doClear = true)
    {
        CodeArray::dump();
        if (doClear) size_ = 0;
    }
#endif

#ifdef XBYAK_UNDEF_JNL
    #undef jnl
#endif

    /*
        use single byte nop if useMultiByteNop = false
    */
    void nop(size_t size = 1, bool useMultiByteNop = true)
    {
        if (!useMultiByteNop) {
            for (size_t i = 0; i < size; i++) {
                db(0x90);
            }
            return;
        }
        /*
            Intel Architectures Software Developer's Manual Volume 2
            recommended multi-byte sequence of NOP instruction
            AMD and Intel seem to agree on the same sequences for up to 9 bytes:
            https://support.amd.com/TechDocs/55723_SOG_Fam_17h_Processors_3.00.pdf
        */
        static const uint8 nopTbl[9][9] = {
            {0x90},
            {0x66, 0x90},
            {0x0F, 0x1F, 0x00},
            {0x0F, 0x1F, 0x40, 0x00},
            {0x0F, 0x1F, 0x44, 0x00, 0x00},
            {0x66, 0x0F, 0x1F, 0x44, 0x00, 0x00},
            {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00},
            {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
            {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
        };
        const size_t n = sizeof(nopTbl) / sizeof(nopTbl[0]);
        while (size > 0) {
            size_t len = (std::min)(n, size);
            const uint8 *seq = nopTbl[len - 1];
            db(seq, len);
            size -= len;
        }
    }

#ifndef XBYAK_DONT_READ_LIST
#include "xbyak_mnemonic.h"
    /*
        use single byte nop if useMultiByteNop = false
    */
    void align(size_t x = 16, bool useMultiByteNop = true)
    {
        if (x == 1) return;
        if (x < 1 || (x & (x - 1))) throw Error(ERR_BAD_ALIGN);
        if (isAutoGrow() && x > inner::ALIGN_PAGE_SIZE) fprintf(stderr, "warning:autoGrow mode does not support %d align\n", (int)x);
        size_t remain = size_t(getCurr()) % x;
        if (remain) {
            nop(x - remain, useMultiByteNop);
        }
    }
#endif
};

namespace util {
static const Mmx mm0(0), mm1(1), mm2(2), mm3(3), mm4(4), mm5(5), mm6(6), mm7(7);
static const Xmm xmm0(0), xmm1(1), xmm2(2), xmm3(3), xmm4(4), xmm5(5), xmm6(6), xmm7(7);
static const Ymm ymm0(0), ymm1(1), ymm2(2), ymm3(3), ymm4(4), ymm5(5), ymm6(6), ymm7(7);
static const Zmm zmm0(0), zmm1(1), zmm2(2), zmm3(3), zmm4(4), zmm5(5), zmm6(6), zmm7(7);
static const Reg32 eax(Operand::EAX), ecx(Operand::ECX), edx(Operand::EDX), ebx(Operand::EBX), esp(Operand::ESP), ebp(Operand::EBP), esi(Operand::ESI), edi(Operand::EDI);
static const Reg16 ax(Operand::AX), cx(Operand::CX), dx(Operand::DX), bx(Operand::BX), sp(Operand::SP), bp(Operand::BP), si(Operand::SI), di(Operand::DI);
static const Reg8 al(Operand::AL), cl(Operand::CL), dl(Operand::DL), bl(Operand::BL), ah(Operand::AH), ch(Operand::CH), dh(Operand::DH), bh(Operand::BH);
static const AddressFrame ptr(0), byte(8), word(16), dword(32), qword(64), xword(128), yword(256), zword(512);
static const AddressFrame ptr_b(0, true), xword_b(128, true), yword_b(256, true), zword_b(512, true);
static const Fpu st0(0), st1(1), st2(2), st3(3), st4(4), st5(5), st6(6), st7(7);
static const Opmask k0(0), k1(1), k2(2), k3(3), k4(4), k5(5), k6(6), k7(7);
static const BoundsReg bnd0(0), bnd1(1), bnd2(2), bnd3(3);
static const EvexModifierRounding T_sae(EvexModifierRounding::T_SAE), T_rn_sae(EvexModifierRounding::T_RN_SAE), T_rd_sae(EvexModifierRounding::T_RD_SAE), T_ru_sae(EvexModifierRounding::T_RU_SAE), T_rz_sae(EvexModifierRounding::T_RZ_SAE);
static const EvexModifierZero T_z;
#ifdef XBYAK64
static const Reg64 rax(Operand::RAX), rcx(Operand::RCX), rdx(Operand::RDX), rbx(Operand::RBX), rsp(Operand::RSP), rbp(Operand::RBP), rsi(Operand::RSI), rdi(Operand::RDI), r8(Operand::R8), r9(Operand::R9), r10(Operand::R10), r11(Operand::R11), r12(Operand::R12), r13(Operand::R13), r14(Operand::R14), r15(Operand::R15);
static const Reg32 r8d(8), r9d(9), r10d(10), r11d(11), r12d(12), r13d(13), r14d(14), r15d(15);
static const Reg16 r8w(8), r9w(9), r10w(10), r11w(11), r12w(12), r13w(13), r14w(14), r15w(15);
static const Reg8 r8b(8), r9b(9), r10b(10), r11b(11), r12b(12), r13b(13), r14b(14), r15b(15), spl(Operand::SPL, true), bpl(Operand::BPL, true), sil(Operand::SIL, true), dil(Operand::DIL, true);
static const Xmm xmm8(8), xmm9(9), xmm10(10), xmm11(11), xmm12(12), xmm13(13), xmm14(14), xmm15(15);
static const Xmm xmm16(16), xmm17(17), xmm18(18), xmm19(19), xmm20(20), xmm21(21), xmm22(22), xmm23(23);
static const Xmm xmm24(24), xmm25(25), xmm26(26), xmm27(27), xmm28(28), xmm29(29), xmm30(30), xmm31(31);
static const Ymm ymm8(8), ymm9(9), ymm10(10), ymm11(11), ymm12(12), ymm13(13), ymm14(14), ymm15(15);
static const Ymm ymm16(16), ymm17(17), ymm18(18), ymm19(19), ymm20(20), ymm21(21), ymm22(22), ymm23(23);
static const Ymm ymm24(24), ymm25(25), ymm26(26), ymm27(27), ymm28(28), ymm29(29), ymm30(30), ymm31(31);
static const Zmm zmm8(8), zmm9(9), zmm10(10), zmm11(11), zmm12(12), zmm13(13), zmm14(14), zmm15(15);
static const Zmm zmm16(16), zmm17(17), zmm18(18), zmm19(19), zmm20(20), zmm21(21), zmm22(22), zmm23(23);
static const Zmm zmm24(24), zmm25(25), zmm26(26), zmm27(27), zmm28(28), zmm29(29), zmm30(30), zmm31(31);
static const RegRip rip;
#endif
#ifndef XBYAK_DISABLE_SEGMENT
static const Segment es(Segment::es), cs(Segment::cs), ss(Segment::ss), ds(Segment::ds), fs(Segment::fs), gs(Segment::gs);
#endif
} // util

#ifdef _MSC_VER
    #pragma warning(pop)
#endif

} // end of namespace

#endif // XBYAK_XBYAK_H_