aboutsummaryrefslogtreecommitdiffstats
path: root/whisper/whisperv6/message.go
blob: 7def35f14f7af3e6052c06bb7f944e1d724ddb3f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

// Contains the Whisper protocol Message element.

package whisperv6

import (
    "crypto/aes"
    "crypto/cipher"
    "crypto/ecdsa"
    crand "crypto/rand"
    "encoding/binary"
    "errors"
    mrand "math/rand"
    "strconv"

    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/crypto"
    "github.com/ethereum/go-ethereum/crypto/ecies"
    "github.com/ethereum/go-ethereum/log"
)

// MessageParams specifies the exact way a message should be wrapped
// into an Envelope.
type MessageParams struct {
    TTL      uint32
    Src      *ecdsa.PrivateKey
    Dst      *ecdsa.PublicKey
    KeySym   []byte
    Topic    TopicType
    WorkTime uint32
    PoW      float64
    Payload  []byte
    Padding  []byte
}

// SentMessage represents an end-user data packet to transmit through the
// Whisper protocol. These are wrapped into Envelopes that need not be
// understood by intermediate nodes, just forwarded.
type sentMessage struct {
    Raw []byte
}

// ReceivedMessage represents a data packet to be received through the
// Whisper protocol and successfully decrypted.
type ReceivedMessage struct {
    Raw []byte

    Payload   []byte
    Padding   []byte
    Signature []byte
    Salt      []byte

    PoW   float64          // Proof of work as described in the Whisper spec
    Sent  uint32           // Time when the message was posted into the network
    TTL   uint32           // Maximum time to live allowed for the message
    Src   *ecdsa.PublicKey // Message recipient (identity used to decode the message)
    Dst   *ecdsa.PublicKey // Message recipient (identity used to decode the message)
    Topic TopicType

    SymKeyHash   common.Hash // The Keccak256Hash of the key
    EnvelopeHash common.Hash // Message envelope hash to act as a unique id
}

func isMessageSigned(flags byte) bool {
    return (flags & signatureFlag) != 0
}

func (msg *ReceivedMessage) isSymmetricEncryption() bool {
    return msg.SymKeyHash != common.Hash{}
}

func (msg *ReceivedMessage) isAsymmetricEncryption() bool {
    return msg.Dst != nil
}

// NewSentMessage creates and initializes a non-signed, non-encrypted Whisper message.
func newSentMessage(params *MessageParams) (*sentMessage, error) {
    const payloadSizeFieldMaxSize = 4
    msg := sentMessage{}
    msg.Raw = make([]byte, 1,
        flagsLength+payloadSizeFieldMaxSize+len(params.Payload)+len(params.Padding)+signatureLength+padSizeLimit)
    msg.Raw[0] = 0 // set all the flags to zero
    msg.addPayloadSizeField(params.Payload)
    msg.Raw = append(msg.Raw, params.Payload...)
    err := msg.appendPadding(params)
    return &msg, err
}

// addPayloadSizeField appends the auxiliary field containing the size of payload
func (msg *sentMessage) addPayloadSizeField(payload []byte) {
    fieldSize := getSizeOfPayloadSizeField(payload)
    field := make([]byte, 4)
    binary.LittleEndian.PutUint32(field, uint32(len(payload)))
    field = field[:fieldSize]
    msg.Raw = append(msg.Raw, field...)
    msg.Raw[0] |= byte(fieldSize)
}

// getSizeOfPayloadSizeField returns the number of bytes necessary to encode the size of payload
func getSizeOfPayloadSizeField(payload []byte) int {
    s := 1
    for i := len(payload); i >= 256; i /= 256 {
        s++
    }
    return s
}

// appendPadding appends the padding specified in params.
// If no padding is provided in params, then random padding is generated.
func (msg *sentMessage) appendPadding(params *MessageParams) error {
    if len(params.Padding) != 0 {
        // padding data was provided by the Dapp, just use it as is
        msg.Raw = append(msg.Raw, params.Padding...)
        return nil
    }

    rawSize := flagsLength + getSizeOfPayloadSizeField(params.Payload) + len(params.Payload)
    if params.Src != nil {
        rawSize += signatureLength
    }
    odd := rawSize % padSizeLimit
    paddingSize := padSizeLimit - odd
    pad := make([]byte, paddingSize)
    _, err := crand.Read(pad)
    if err != nil {
        return err
    }
    if !validateDataIntegrity(pad, paddingSize) {
        return errors.New("failed to generate random padding of size " + strconv.Itoa(paddingSize))
    }
    msg.Raw = append(msg.Raw, pad...)
    return nil
}

// sign calculates and sets the cryptographic signature for the message,
// also setting the sign flag.
func (msg *sentMessage) sign(key *ecdsa.PrivateKey) error {
    if isMessageSigned(msg.Raw[0]) {
        // this should not happen, but no reason to panic
        log.Error("failed to sign the message: already signed")
        return nil
    }

    msg.Raw[0] |= signatureFlag // it is important to set this flag before signing
    hash := crypto.Keccak256(msg.Raw)
    signature, err := crypto.Sign(hash, key)
    if err != nil {
        msg.Raw[0] &= (0xFF ^ signatureFlag) // clear the flag
        return err
    }
    msg.Raw = append(msg.Raw, signature...)
    return nil
}

// encryptAsymmetric encrypts a message with a public key.
func (msg *sentMessage) encryptAsymmetric(key *ecdsa.PublicKey) error {
    if !ValidatePublicKey(key) {
        return errors.New("invalid public key provided for asymmetric encryption")
    }
    encrypted, err := ecies.Encrypt(crand.Reader, ecies.ImportECDSAPublic(key), msg.Raw, nil, nil)
    if err == nil {
        msg.Raw = encrypted
    }
    return err
}

// encryptSymmetric encrypts a message with a topic key, using AES-GCM-256.
// nonce size should be 12 bytes (see cipher.gcmStandardNonceSize).
func (msg *sentMessage) encryptSymmetric(key []byte) (err error) {
    if !validateDataIntegrity(key, aesKeyLength) {
        return errors.New("invalid key provided for symmetric encryption, size: " + strconv.Itoa(len(key)))
    }
    block, err := aes.NewCipher(key)
    if err != nil {
        return err
    }
    aesgcm, err := cipher.NewGCM(block)
    if err != nil {
        return err
    }
    salt, err := generateSecureRandomData(aesNonceLength) // never use more than 2^32 random nonces with a given key
    if err != nil {
        return err
    }
    encrypted := aesgcm.Seal(nil, salt, msg.Raw, nil)
    msg.Raw = append(encrypted, salt...)
    return nil
}

// generateSecureRandomData generates random data where extra security is required.
// The purpose of this function is to prevent some bugs in software or in hardware
// from delivering not-very-random data. This is especially useful for AES nonce,
// where true randomness does not really matter, but it is very important to have
// a unique nonce for every message.
func generateSecureRandomData(length int) ([]byte, error) {
    x := make([]byte, length)
    y := make([]byte, length)
    res := make([]byte, length)

    _, err := crand.Read(x)
    if err != nil {
        return nil, err
    } else if !validateDataIntegrity(x, length) {
        return nil, errors.New("crypto/rand failed to generate secure random data")
    }
    _, err = mrand.Read(y)
    if err != nil {
        return nil, err
    } else if !validateDataIntegrity(y, length) {
        return nil, errors.New("math/rand failed to generate secure random data")
    }
    for i := 0; i < length; i++ {
        res[i] = x[i] ^ y[i]
    }
    if !validateDataIntegrity(res, length) {
        return nil, errors.New("failed to generate secure random data")
    }
    return res, nil
}

// Wrap bundles the message into an Envelope to transmit over the network.
func (msg *sentMessage) Wrap(options *MessageParams) (envelope *Envelope, err error) {
    if options.TTL == 0 {
        options.TTL = DefaultTTL
    }
    if options.Src != nil {
        if err = msg.sign(options.Src); err != nil {
            return nil, err
        }
    }
    if options.Dst != nil {
        err = msg.encryptAsymmetric(options.Dst)
    } else if options.KeySym != nil {
        err = msg.encryptSymmetric(options.KeySym)
    } else {
        err = errors.New("unable to encrypt the message: neither symmetric nor assymmetric key provided")
    }
    if err != nil {
        return nil, err
    }

    envelope = NewEnvelope(options.TTL, options.Topic, msg)
    if err = envelope.Seal(options); err != nil {
        return nil, err
    }
    return envelope, nil
}

// decryptSymmetric decrypts a message with a topic key, using AES-GCM-256.
// nonce size should be 12 bytes (see cipher.gcmStandardNonceSize).
func (msg *ReceivedMessage) decryptSymmetric(key []byte) error {
    // symmetric messages are expected to contain the 12-byte nonce at the end of the payload
    if len(msg.Raw) < aesNonceLength {
        return errors.New("missing salt or invalid payload in symmetric message")
    }
    salt := msg.Raw[len(msg.Raw)-aesNonceLength:]

    block, err := aes.NewCipher(key)
    if err != nil {
        return err
    }
    aesgcm, err := cipher.NewGCM(block)
    if err != nil {
        return err
    }
    decrypted, err := aesgcm.Open(nil, salt, msg.Raw[:len(msg.Raw)-aesNonceLength], nil)
    if err != nil {
        return err
    }
    msg.Raw = decrypted
    msg.Salt = salt
    return nil
}

// decryptAsymmetric decrypts an encrypted payload with a private key.
func (msg *ReceivedMessage) decryptAsymmetric(key *ecdsa.PrivateKey) error {
    decrypted, err := ecies.ImportECDSA(key).Decrypt(crand.Reader, msg.Raw, nil, nil)
    if err == nil {
        msg.Raw = decrypted
    }
    return err
}

// ValidateAndParse checks the message validity and extracts the fields in case of success.
func (msg *ReceivedMessage) ValidateAndParse() bool {
    end := len(msg.Raw)
    if end < 1 {
        return false
    }

    if isMessageSigned(msg.Raw[0]) {
        end -= signatureLength
        if end <= 1 {
            return false
        }
        msg.Signature = msg.Raw[end : end+signatureLength]
        msg.Src = msg.SigToPubKey()
        if msg.Src == nil {
            return false
        }
    }

    beg := 1
    payloadSize := 0
    sizeOfPayloadSizeField := int(msg.Raw[0] & SizeMask) // number of bytes indicating the size of payload
    if sizeOfPayloadSizeField != 0 {
        payloadSize = int(bytesToUintLittleEndian(msg.Raw[beg : beg+sizeOfPayloadSizeField]))
        if payloadSize+1 > end {
            return false
        }
        beg += sizeOfPayloadSizeField
        msg.Payload = msg.Raw[beg : beg+payloadSize]
    }

    beg += payloadSize
    msg.Padding = msg.Raw[beg:end]
    return true
}

// SigToPubKey returns the public key associated to the message's
// signature.
func (msg *ReceivedMessage) SigToPubKey() *ecdsa.PublicKey {
    defer func() { recover() }() // in case of invalid signature

    pub, err := crypto.SigToPub(msg.hash(), msg.Signature)
    if err != nil {
        log.Error("failed to recover public key from signature", "err", err)
        return nil
    }
    return pub
}

// hash calculates the SHA3 checksum of the message flags, payload size field, payload and padding.
func (msg *ReceivedMessage) hash() []byte {
    if isMessageSigned(msg.Raw[0]) {
        sz := len(msg.Raw) - signatureLength
        return crypto.Keccak256(msg.Raw[:sz])
    }
    return crypto.Keccak256(msg.Raw)
}