aboutsummaryrefslogtreecommitdiffstats
path: root/crypto
diff options
context:
space:
mode:
authorJeffrey Wilcke <jeffrey@ethereum.org>2015-10-16 01:46:57 +0800
committerJeffrey Wilcke <jeffrey@ethereum.org>2015-10-16 01:46:57 +0800
commitf466243417f60531998e8b500f2bb043af5b3d2a (patch)
tree9f8387b65d2a9d54a94ed26bc6a57ecfde3489f6 /crypto
parentcefe5c80b1cdcab606a169c0be65d9d2ba9bc941 (diff)
parentf32fa075f14d2b3a1213098274e0ba88c7761283 (diff)
downloadgo-tangerine-f466243417f60531998e8b500f2bb043af5b3d2a.tar.gz
go-tangerine-f466243417f60531998e8b500f2bb043af5b3d2a.tar.zst
go-tangerine-f466243417f60531998e8b500f2bb043af5b3d2a.zip
Merge pull request #1853 from Gustav-Simonsson/libsecp256k1_update
Update libsecp256k1, Go wrapper and tests
Diffstat (limited to 'crypto')
-rw-r--r--crypto/crypto.go10
-rw-r--r--crypto/secp256k1/libsecp256k1/.gitignore41
-rw-r--r--crypto/secp256k1/libsecp256k1/.travis.yml62
-rw-r--r--crypto/secp256k1/libsecp256k1/COPYING (renamed from crypto/secp256k1/secp256k1/COPYING)0
-rw-r--r--crypto/secp256k1/libsecp256k1/Makefile.am (renamed from crypto/secp256k1/secp256k1/Makefile.am)47
-rw-r--r--crypto/secp256k1/libsecp256k1/README.md (renamed from crypto/secp256k1/secp256k1/README.md)0
-rw-r--r--crypto/secp256k1/libsecp256k1/TODO (renamed from crypto/secp256k1/secp256k1/TODO)0
-rwxr-xr-xcrypto/secp256k1/libsecp256k1/autogen.sh (renamed from crypto/secp256k1/secp256k1/autogen.sh)0
-rw-r--r--crypto/secp256k1/libsecp256k1/configure.ac (renamed from crypto/secp256k1/secp256k1/configure.ac)64
-rw-r--r--crypto/secp256k1/libsecp256k1/include/secp256k1.h547
-rw-r--r--crypto/secp256k1/libsecp256k1/include/secp256k1_ecdh.h30
-rw-r--r--crypto/secp256k1/libsecp256k1/include/secp256k1_recovery.h110
-rw-r--r--crypto/secp256k1/libsecp256k1/include/secp256k1_schnorr.h173
-rw-r--r--crypto/secp256k1/libsecp256k1/libsecp256k1.pc.in (renamed from crypto/secp256k1/secp256k1/libsecp256k1.pc.in)0
-rw-r--r--crypto/secp256k1/libsecp256k1/obj/.gitignore (renamed from crypto/secp256k1/secp256k1/obj/.gitignore)0
-rw-r--r--crypto/secp256k1/libsecp256k1/src/basic-config.h32
-rw-r--r--crypto/secp256k1/libsecp256k1/src/bench.h (renamed from crypto/secp256k1/secp256k1/src/bench.h)22
-rw-r--r--crypto/secp256k1/libsecp256k1/src/bench_ecdh.c53
-rw-r--r--crypto/secp256k1/libsecp256k1/src/bench_internal.c (renamed from crypto/secp256k1/secp256k1/src/bench_internal.c)62
-rw-r--r--crypto/secp256k1/libsecp256k1/src/bench_recover.c (renamed from crypto/secp256k1/secp256k1/src/bench_recover.c)29
-rw-r--r--crypto/secp256k1/libsecp256k1/src/bench_schnorr_verify.c73
-rw-r--r--crypto/secp256k1/libsecp256k1/src/bench_sign.c (renamed from crypto/secp256k1/secp256k1/src/bench_sign.c)26
-rw-r--r--crypto/secp256k1/libsecp256k1/src/bench_verify.c (renamed from crypto/secp256k1/secp256k1/src/bench_verify.c)32
-rw-r--r--crypto/secp256k1/libsecp256k1/src/ecdsa.h22
-rw-r--r--crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h (renamed from crypto/secp256k1/secp256k1/src/ecdsa_impl.h)91
-rw-r--r--crypto/secp256k1/libsecp256k1/src/eckey.h28
-rw-r--r--crypto/secp256k1/libsecp256k1/src/eckey_impl.h (renamed from crypto/secp256k1/secp256k1/src/eckey_impl.h)44
-rw-r--r--crypto/secp256k1/libsecp256k1/src/ecmult.h31
-rw-r--r--crypto/secp256k1/libsecp256k1/src/ecmult_const.h (renamed from crypto/secp256k1/secp256k1/src/ecmult_gen.h)12
-rw-r--r--crypto/secp256k1/libsecp256k1/src/ecmult_const_impl.h260
-rw-r--r--crypto/secp256k1/libsecp256k1/src/ecmult_gen.h43
-rw-r--r--crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h205
-rw-r--r--crypto/secp256k1/libsecp256k1/src/ecmult_impl.h389
-rw-r--r--crypto/secp256k1/libsecp256k1/src/field.h (renamed from crypto/secp256k1/secp256k1/src/field.h)53
-rw-r--r--crypto/secp256k1/libsecp256k1/src/field_10x26.h (renamed from crypto/secp256k1/secp256k1/src/field_10x26.h)24
-rw-r--r--crypto/secp256k1/libsecp256k1/src/field_10x26_impl.h (renamed from crypto/secp256k1/secp256k1/src/field_10x26_impl.h)68
-rw-r--r--crypto/secp256k1/libsecp256k1/src/field_5x52.h (renamed from crypto/secp256k1/secp256k1/src/field_5x52.h)22
-rw-r--r--crypto/secp256k1/libsecp256k1/src/field_5x52_asm_impl.h (renamed from crypto/secp256k1/secp256k1/src/field_5x52_asm_impl.h)0
-rw-r--r--crypto/secp256k1/libsecp256k1/src/field_5x52_impl.h (renamed from crypto/secp256k1/secp256k1/src/field_5x52_impl.h)63
-rw-r--r--crypto/secp256k1/libsecp256k1/src/field_5x52_int128_impl.h (renamed from crypto/secp256k1/secp256k1/src/field_5x52_int128_impl.h)0
-rw-r--r--crypto/secp256k1/libsecp256k1/src/field_impl.h (renamed from crypto/secp256k1/secp256k1/src/field_impl.h)32
-rw-r--r--crypto/secp256k1/libsecp256k1/src/gen_context.c74
-rw-r--r--crypto/secp256k1/libsecp256k1/src/group.h141
-rw-r--r--crypto/secp256k1/libsecp256k1/src/group_impl.h632
-rw-r--r--crypto/secp256k1/libsecp256k1/src/hash.h (renamed from crypto/secp256k1/secp256k1/src/hash.h)2
-rw-r--r--crypto/secp256k1/libsecp256k1/src/hash_impl.h (renamed from crypto/secp256k1/secp256k1/src/hash_impl.h)12
-rw-r--r--crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1.java (renamed from crypto/secp256k1/secp256k1/src/java/org/bitcoin/NativeSecp256k1.java)0
-rw-r--r--crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.c (renamed from crypto/secp256k1/secp256k1/src/java/org_bitcoin_NativeSecp256k1.c)0
-rw-r--r--crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.h (renamed from crypto/secp256k1/secp256k1/src/java/org_bitcoin_NativeSecp256k1.h)0
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/ecdh/Makefile.am.include9
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/ecdh/main_impl.h54
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/ecdh/tests_impl.h75
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/recovery/Makefile.am.include9
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/recovery/main_impl.h156
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/recovery/tests_impl.h249
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/schnorr/Makefile.am.include11
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/schnorr/main_impl.h164
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr.h20
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr_impl.h207
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/schnorr/tests_impl.h175
-rw-r--r--crypto/secp256k1/libsecp256k1/src/num.h (renamed from crypto/secp256k1/secp256k1/src/num.h)28
-rw-r--r--crypto/secp256k1/libsecp256k1/src/num_gmp.h (renamed from crypto/secp256k1/secp256k1/src/num_gmp.h)2
-rw-r--r--crypto/secp256k1/libsecp256k1/src/num_gmp_impl.h (renamed from crypto/secp256k1/secp256k1/src/num_gmp_impl.h)38
-rw-r--r--crypto/secp256k1/libsecp256k1/src/num_impl.h (renamed from crypto/secp256k1/secp256k1/src/num_impl.h)0
-rw-r--r--crypto/secp256k1/libsecp256k1/src/scalar.h104
-rw-r--r--crypto/secp256k1/libsecp256k1/src/scalar_4x64.h (renamed from crypto/secp256k1/secp256k1/src/scalar_4x64.h)2
-rw-r--r--crypto/secp256k1/libsecp256k1/src/scalar_4x64_impl.h (renamed from crypto/secp256k1/secp256k1/src/scalar_4x64_impl.h)79
-rw-r--r--crypto/secp256k1/libsecp256k1/src/scalar_8x32.h (renamed from crypto/secp256k1/secp256k1/src/scalar_8x32.h)2
-rw-r--r--crypto/secp256k1/libsecp256k1/src/scalar_8x32_impl.h (renamed from crypto/secp256k1/secp256k1/src/scalar_8x32_impl.h)90
-rw-r--r--crypto/secp256k1/libsecp256k1/src/scalar_impl.h (renamed from crypto/secp256k1/secp256k1/src/scalar_impl.h)40
-rw-r--r--crypto/secp256k1/libsecp256k1/src/secp256k1.c513
-rw-r--r--crypto/secp256k1/libsecp256k1/src/testrand.h (renamed from crypto/secp256k1/secp256k1/src/testrand.h)0
-rw-r--r--crypto/secp256k1/libsecp256k1/src/testrand_impl.h (renamed from crypto/secp256k1/secp256k1/src/testrand_impl.h)2
-rw-r--r--crypto/secp256k1/libsecp256k1/src/tests.c (renamed from crypto/secp256k1/secp256k1/src/tests.c)1446
-rw-r--r--crypto/secp256k1/libsecp256k1/src/util.h (renamed from crypto/secp256k1/secp256k1/src/util.h)26
-rw-r--r--crypto/secp256k1/secp256.go196
-rw-r--r--crypto/secp256k1/secp256_test.go299
-rw-r--r--crypto/secp256k1/secp256k1/.travis.yml32
-rw-r--r--crypto/secp256k1/secp256k1/build-aux/m4/bitcoin_secp.m461
-rw-r--r--crypto/secp256k1/secp256k1/include/secp256k1.h295
-rw-r--r--crypto/secp256k1/secp256k1/src/ecdsa.h23
-rw-r--r--crypto/secp256k1/secp256k1/src/eckey.h24
-rw-r--r--crypto/secp256k1/secp256k1/src/ecmult.h19
-rw-r--r--crypto/secp256k1/secp256k1/src/ecmult_gen_impl.h128
-rw-r--r--crypto/secp256k1/secp256k1/src/ecmult_impl.h302
-rw-r--r--crypto/secp256k1/secp256k1/src/group.h118
-rw-r--r--crypto/secp256k1/secp256k1/src/group_impl.h434
-rw-r--r--crypto/secp256k1/secp256k1/src/scalar.h93
-rw-r--r--crypto/secp256k1/secp256k1/src/secp256k1.c372
89 files changed, 6536 insertions, 3022 deletions
diff --git a/crypto/crypto.go b/crypto/crypto.go
index 272050106..49793ded9 100644
--- a/crypto/crypto.go
+++ b/crypto/crypto.go
@@ -198,7 +198,9 @@ func Sign(hash []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) {
return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash))
}
- sig, err = secp256k1.Sign(hash, common.LeftPadBytes(prv.D.Bytes(), prv.Params().BitSize/8))
+ seckey := common.LeftPadBytes(prv.D.Bytes(), prv.Params().BitSize/8)
+ defer zeroBytes(seckey)
+ sig, err = secp256k1.Sign(hash, seckey)
return
}
@@ -326,3 +328,9 @@ func PubkeyToAddress(p ecdsa.PublicKey) common.Address {
pubBytes := FromECDSAPub(&p)
return common.BytesToAddress(Sha3(pubBytes[1:])[12:])
}
+
+func zeroBytes(bytes []byte) {
+ for i := range bytes {
+ bytes[i] = 0
+ }
+}
diff --git a/crypto/secp256k1/libsecp256k1/.gitignore b/crypto/secp256k1/libsecp256k1/.gitignore
new file mode 100644
index 000000000..e0b7b7a48
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/.gitignore
@@ -0,0 +1,41 @@
+bench_inv
+bench_ecdh
+bench_sign
+bench_verify
+bench_schnorr_verify
+bench_recover
+bench_internal
+tests
+gen_context
+*.exe
+*.so
+*.a
+!.gitignore
+
+Makefile
+configure
+.libs/
+Makefile.in
+aclocal.m4
+autom4te.cache/
+config.log
+config.status
+*.tar.gz
+*.la
+libtool
+.deps/
+.dirstamp
+build-aux/
+*.lo
+*.o
+*~
+src/libsecp256k1-config.h
+src/libsecp256k1-config.h.in
+src/ecmult_static_context.h
+m4/libtool.m4
+m4/ltoptions.m4
+m4/ltsugar.m4
+m4/ltversion.m4
+m4/lt~obsolete.m4
+src/stamp-h1
+libsecp256k1.pc
diff --git a/crypto/secp256k1/libsecp256k1/.travis.yml b/crypto/secp256k1/libsecp256k1/.travis.yml
new file mode 100644
index 000000000..fba0892dd
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/.travis.yml
@@ -0,0 +1,62 @@
+language: c
+sudo: false
+addons:
+ apt:
+ packages: libgmp-dev
+compiler:
+ - clang
+ - gcc
+env:
+ global:
+ - FIELD=auto BIGNUM=auto SCALAR=auto ENDOMORPHISM=no STATICPRECOMPUTATION=yes ASM=no BUILD=check EXTRAFLAGS= HOST= ECDH=no schnorr=NO RECOVERY=NO
+ matrix:
+ - SCALAR=32bit RECOVERY=yes
+ - SCALAR=32bit FIELD=32bit ECDH=yes
+ - SCALAR=64bit
+ - FIELD=64bit RECOVERY=yes
+ - FIELD=64bit ENDOMORPHISM=yes
+ - FIELD=64bit ENDOMORPHISM=yes ECDH=yes
+ - FIELD=64bit ASM=x86_64
+ - FIELD=64bit ENDOMORPHISM=yes ASM=x86_64
+ - FIELD=32bit SCHNORR=yes
+ - FIELD=32bit ENDOMORPHISM=yes
+ - BIGNUM=no
+ - BIGNUM=no ENDOMORPHISM=yes SCHNORR=yes RECOVERY=yes
+ - BIGNUM=no STATICPRECOMPUTATION=no
+ - BUILD=distcheck
+ - EXTRAFLAGS=CFLAGS=-DDETERMINISTIC
+matrix:
+ fast_finish: true
+ include:
+ - compiler: clang
+ env: HOST=i686-linux-gnu ENDOMORPHISM=yes
+ addons:
+ apt:
+ packages:
+ - gcc-multilib
+ - libgmp-dev:i386
+ - compiler: clang
+ env: HOST=i686-linux-gnu
+ addons:
+ apt:
+ packages:
+ - gcc-multilib
+ - compiler: gcc
+ env: HOST=i686-linux-gnu ENDOMORPHISM=yes
+ addons:
+ apt:
+ packages:
+ - gcc-multilib
+ - compiler: gcc
+ env: HOST=i686-linux-gnu
+ addons:
+ apt:
+ packages:
+ - gcc-multilib
+ - libgmp-dev:i386
+before_script: ./autogen.sh
+script:
+ - if [ -n "$HOST" ]; then export USE_HOST="--host=$HOST"; fi
+ - if [ "x$HOST" = "xi686-linux-gnu" ]; then export CC="$CC -m32"; fi
+ - ./configure --enable-endomorphism=$ENDOMORPHISM --with-field=$FIELD --with-bignum=$BIGNUM --with-scalar=$SCALAR --enable-ecmult-static-precomputation=$STATICPRECOMPUTATION --enable-module-ecdh=$ECDH --enable-module-schnorr=$SCHNORR $EXTRAFLAGS $USE_HOST && make -j2 $BUILD
+os: linux
diff --git a/crypto/secp256k1/secp256k1/COPYING b/crypto/secp256k1/libsecp256k1/COPYING
index 4522a5990..4522a5990 100644
--- a/crypto/secp256k1/secp256k1/COPYING
+++ b/crypto/secp256k1/libsecp256k1/COPYING
diff --git a/crypto/secp256k1/secp256k1/Makefile.am b/crypto/secp256k1/libsecp256k1/Makefile.am
index cc15338b7..57524fab0 100644
--- a/crypto/secp256k1/secp256k1/Makefile.am
+++ b/crypto/secp256k1/libsecp256k1/Makefile.am
@@ -19,6 +19,8 @@ noinst_HEADERS += src/eckey.h
noinst_HEADERS += src/eckey_impl.h
noinst_HEADERS += src/ecmult.h
noinst_HEADERS += src/ecmult_impl.h
+noinst_HEADERS += src/ecmult_const.h
+noinst_HEADERS += src/ecmult_const_impl.h
noinst_HEADERS += src/ecmult_gen.h
noinst_HEADERS += src/ecmult_gen_impl.h
noinst_HEADERS += src/num.h
@@ -43,19 +45,16 @@ pkgconfigdir = $(libdir)/pkgconfig
pkgconfig_DATA = libsecp256k1.pc
libsecp256k1_la_SOURCES = src/secp256k1.c
-libsecp256k1_la_CPPFLAGS = -I$(top_srcdir)/include $(SECP_INCLUDES)
+libsecp256k1_la_CPPFLAGS = -I$(top_srcdir)/include -I$(top_srcdir)/src $(SECP_INCLUDES)
libsecp256k1_la_LIBADD = $(SECP_LIBS)
noinst_PROGRAMS =
if USE_BENCHMARK
-noinst_PROGRAMS += bench_verify bench_recover bench_sign bench_internal
+noinst_PROGRAMS += bench_verify bench_sign bench_internal
bench_verify_SOURCES = src/bench_verify.c
bench_verify_LDADD = libsecp256k1.la $(SECP_LIBS)
bench_verify_LDFLAGS = -static
-bench_recover_SOURCES = src/bench_recover.c
-bench_recover_LDADD = libsecp256k1.la $(SECP_LIBS)
-bench_recover_LDFLAGS = -static
bench_sign_SOURCES = src/bench_sign.c
bench_sign_LDADD = libsecp256k1.la $(SECP_LIBS)
bench_sign_LDFLAGS = -static
@@ -68,10 +67,44 @@ endif
if USE_TESTS
noinst_PROGRAMS += tests
tests_SOURCES = src/tests.c
-tests_CPPFLAGS = -DVERIFY $(SECP_INCLUDES) $(SECP_TEST_INCLUDES)
+tests_CPPFLAGS = -DVERIFY -I$(top_srcdir)/src $(SECP_INCLUDES) $(SECP_TEST_INCLUDES)
tests_LDADD = $(SECP_LIBS) $(SECP_TEST_LIBS)
tests_LDFLAGS = -static
TESTS = tests
endif
-EXTRA_DIST = autogen.sh
+if USE_ECMULT_STATIC_PRECOMPUTATION
+CPPFLAGS_FOR_BUILD +=-I$(top_srcdir)/
+CFLAGS_FOR_BUILD += -Wall -Wextra -Wno-unused-function
+
+gen_context_OBJECTS = gen_context.o
+gen_context_BIN = gen_context$(BUILD_EXEEXT)
+gen_%.o: src/gen_%.c
+ $(CC_FOR_BUILD) $(CPPFLAGS_FOR_BUILD) $(CFLAGS_FOR_BUILD) -c $< -o $@
+
+$(gen_context_BIN): $(gen_context_OBJECTS)
+ $(CC_FOR_BUILD) $^ -o $@
+
+$(libsecp256k1_la_OBJECTS): src/ecmult_static_context.h
+$(tests_OBJECTS): src/ecmult_static_context.h
+$(bench_internal_OBJECTS): src/ecmult_static_context.h
+
+src/ecmult_static_context.h: $(gen_context_BIN)
+ ./$(gen_context_BIN)
+
+CLEANFILES = $(gen_context_BIN) src/ecmult_static_context.h
+endif
+
+EXTRA_DIST = autogen.sh src/gen_context.c src/basic-config.h
+
+if ENABLE_MODULE_ECDH
+include src/modules/ecdh/Makefile.am.include
+endif
+
+if ENABLE_MODULE_SCHNORR
+include src/modules/schnorr/Makefile.am.include
+endif
+
+if ENABLE_MODULE_RECOVERY
+include src/modules/recovery/Makefile.am.include
+endif
diff --git a/crypto/secp256k1/secp256k1/README.md b/crypto/secp256k1/libsecp256k1/README.md
index 6095db422..6095db422 100644
--- a/crypto/secp256k1/secp256k1/README.md
+++ b/crypto/secp256k1/libsecp256k1/README.md
diff --git a/crypto/secp256k1/secp256k1/TODO b/crypto/secp256k1/libsecp256k1/TODO
index a300e1c5e..a300e1c5e 100644
--- a/crypto/secp256k1/secp256k1/TODO
+++ b/crypto/secp256k1/libsecp256k1/TODO
diff --git a/crypto/secp256k1/secp256k1/autogen.sh b/crypto/secp256k1/libsecp256k1/autogen.sh
index 65286b935..65286b935 100755
--- a/crypto/secp256k1/secp256k1/autogen.sh
+++ b/crypto/secp256k1/libsecp256k1/autogen.sh
diff --git a/crypto/secp256k1/secp256k1/configure.ac b/crypto/secp256k1/libsecp256k1/configure.ac
index 3dc182951..786d8dcfb 100644
--- a/crypto/secp256k1/secp256k1/configure.ac
+++ b/crypto/secp256k1/libsecp256k1/configure.ac
@@ -17,25 +17,19 @@ PKG_PROG_PKG_CONFIG
AC_PATH_TOOL(AR, ar)
AC_PATH_TOOL(RANLIB, ranlib)
AC_PATH_TOOL(STRIP, strip)
+AX_PROG_CC_FOR_BUILD
if test "x$CFLAGS" = "x"; then
CFLAGS="-O3 -g"
fi
+AM_PROG_CC_C_O
+
AC_PROG_CC_C89
if test x"$ac_cv_prog_cc_c89" = x"no"; then
AC_MSG_ERROR([c89 compiler support required])
fi
-case $host in
- *mingw*)
- use_pkgconfig=no
- ;;
- *)
- use_pkgconfig=yes
- ;;
-esac
-
case $host_os in
*darwin*)
if test x$cross_compiling != xyes; then
@@ -80,6 +74,14 @@ AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])],
CFLAGS="$saved_CFLAGS"
])
+saved_CFLAGS="$CFLAGS"
+CFLAGS="$CFLAGS -fvisibility=hidden"
+AC_MSG_CHECKING([if ${CC} supports -fvisibility=hidden])
+AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])],
+ [ AC_MSG_RESULT([yes]) ],
+ [ AC_MSG_RESULT([no])
+ CFLAGS="$saved_CFLAGS"
+ ])
AC_ARG_ENABLE(benchmark,
AS_HELP_STRING([--enable-benchmark],[compile benchmark (default is no)]),
@@ -95,6 +97,26 @@ AC_ARG_ENABLE(endomorphism,
AS_HELP_STRING([--enable-endomorphism],[enable endomorphism (default is no)]),
[use_endomorphism=$enableval],
[use_endomorphism=no])
+
+AC_ARG_ENABLE(ecmult_static_precomputation,
+ AS_HELP_STRING([--enable-ecmult-static-precomputation],[enable precomputed ecmult table for signing (default is yes)]),
+ [use_ecmult_static_precomputation=$enableval],
+ [use_ecmult_static_precomputation=yes])
+
+AC_ARG_ENABLE(module_ecdh,
+ AS_HELP_STRING([--enable-module-ecdh],[enable ECDH shared secret computation (default is no)]),
+ [enable_module_ecdh=$enableval],
+ [enable_module_ecdh=no])
+
+AC_ARG_ENABLE(module_schnorr,
+ AS_HELP_STRING([--enable-module-schnorr],[enable Schnorr signature module (default is no)]),
+ [enable_module_schnorr=$enableval],
+ [enable_module_schnorr=no])
+
+AC_ARG_ENABLE(module_recovery,
+ AS_HELP_STRING([--enable-module-recovery],[enable ECDSA pubkey recovery module (default is no)]),
+ [enable_module_recovery=$enableval],
+ [enable_module_recovery=no])
AC_ARG_WITH([field], [AS_HELP_STRING([--with-field=64bit|32bit|auto],
[Specify Field Implementation. Default is auto])],[req_field=$withval], [req_field=auto])
@@ -305,6 +327,22 @@ if test x"$use_endomorphism" = x"yes"; then
AC_DEFINE(USE_ENDOMORPHISM, 1, [Define this symbol to use endomorphism optimization])
fi
+if test x"$use_ecmult_static_precomputation" = x"yes"; then
+ AC_DEFINE(USE_ECMULT_STATIC_PRECOMPUTATION, 1, [Define this symbol to use a statically generated ecmult table])
+fi
+
+if test x"$enable_module_ecdh" = x"yes"; then
+ AC_DEFINE(ENABLE_MODULE_ECDH, 1, [Define this symbol to enable the ECDH module])
+fi
+
+if test x"$enable_module_schnorr" = x"yes"; then
+ AC_DEFINE(ENABLE_MODULE_SCHNORR, 1, [Define this symbol to enable the Schnorr signature module])
+fi
+
+if test x"$enable_module_recovery" = x"yes"; then
+ AC_DEFINE(ENABLE_MODULE_RECOVERY, 1, [Define this symbol to enable the ECDSA pubkey recovery module])
+fi
+
AC_C_BIGENDIAN()
AC_MSG_NOTICE([Using assembly optimizations: $set_asm])
@@ -312,6 +350,10 @@ AC_MSG_NOTICE([Using field implementation: $set_field])
AC_MSG_NOTICE([Using bignum implementation: $set_bignum])
AC_MSG_NOTICE([Using scalar implementation: $set_scalar])
AC_MSG_NOTICE([Using endomorphism optimizations: $use_endomorphism])
+AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh])
+
+AC_MSG_NOTICE([Building Schnorr signatures module: $enable_module_schnorr])
+AC_MSG_NOTICE([Building ECDSA pubkey recovery module: $enable_module_recovery])
AC_CONFIG_HEADERS([src/libsecp256k1-config.h])
AC_CONFIG_FILES([Makefile libsecp256k1.pc])
@@ -321,6 +363,10 @@ AC_SUBST(SECP_TEST_LIBS)
AC_SUBST(SECP_TEST_INCLUDES)
AM_CONDITIONAL([USE_TESTS], [test x"$use_tests" != x"no"])
AM_CONDITIONAL([USE_BENCHMARK], [test x"$use_benchmark" = x"yes"])
+AM_CONDITIONAL([USE_ECMULT_STATIC_PRECOMPUTATION], [test x"$use_ecmult_static_precomputation" = x"yes"])
+AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"])
+AM_CONDITIONAL([ENABLE_MODULE_SCHNORR], [test x"$enable_module_schnorr" = x"yes"])
+AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"])
dnl make sure nothing new is exported so that we don't break the cache
PKGCONFIG_PATH_TEMP="$PKG_CONFIG_PATH"
diff --git a/crypto/secp256k1/libsecp256k1/include/secp256k1.h b/crypto/secp256k1/libsecp256k1/include/secp256k1.h
new file mode 100644
index 000000000..23378de1f
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/include/secp256k1.h
@@ -0,0 +1,547 @@
+#ifndef _SECP256K1_
+# define _SECP256K1_
+
+# ifdef __cplusplus
+extern "C" {
+# endif
+
+#include <stddef.h>
+
+/* These rules specify the order of arguments in API calls:
+ *
+ * 1. Context pointers go first, followed by output arguments, combined
+ * output/input arguments, and finally input-only arguments.
+ * 2. Array lengths always immediately the follow the argument whose length
+ * they describe, even if this violates rule 1.
+ * 3. Within the OUT/OUTIN/IN groups, pointers to data that is typically generated
+ * later go first. This means: signatures, public nonces, private nonces,
+ * messages, public keys, secret keys, tweaks.
+ * 4. Arguments that are not data pointers go last, from more complex to less
+ * complex: function pointers, algorithm names, messages, void pointers,
+ * counts, flags, booleans.
+ * 5. Opaque data pointers follow the function pointer they are to be passed to.
+ */
+
+/** Opaque data structure that holds context information (precomputed tables etc.).
+ *
+ * The purpose of context structures is to cache large precomputed data tables
+ * that are expensive to construct, and also to maintain the randomization data
+ * for blinding.
+ *
+ * Do not create a new context object for each operation, as construction is
+ * far slower than all other API calls (~100 times slower than an ECDSA
+ * verification).
+ *
+ * A constructed context can safely be used from multiple threads
+ * simultaneously, but API call that take a non-const pointer to a context
+ * need exclusive access to it. In particular this is the case for
+ * secp256k1_context_destroy and secp256k1_context_randomize.
+ *
+ * Regarding randomization, either do it once at creation time (in which case
+ * you do not need any locking for the other calls), or use a read-write lock.
+ */
+typedef struct secp256k1_context_struct secp256k1_context;
+
+/** Opaque data structure that holds a parsed and valid public key.
+ *
+ * The exact representation of data inside is implementation defined and not
+ * guaranteed to be portable between different platforms or versions. It is
+ * however guaranteed to be 64 bytes in size, and can be safely copied/moved.
+ * If you need to convert to a format suitable for storage or transmission, use
+ * secp256k1_ec_pubkey_serialize and secp256k1_ec_pubkey_parse.
+ *
+ * Furthermore, it is guaranteed that identical public keys (ignoring
+ * compression) will have identical representation, so they can be memcmp'ed.
+ */
+typedef struct {
+ unsigned char data[64];
+} secp256k1_pubkey;
+
+/** Opaque data structured that holds a parsed ECDSA signature.
+ *
+ * The exact representation of data inside is implementation defined and not
+ * guaranteed to be portable between different platforms or versions. It is
+ * however guaranteed to be 64 bytes in size, and can be safely copied/moved.
+ * If you need to convert to a format suitable for storage or transmission, use
+ * the secp256k1_ecdsa_signature_serialize_* and
+ * secp256k1_ecdsa_signature_serialize_* functions.
+ *
+ * Furthermore, it is guaranteed to identical signatures will have identical
+ * representation, so they can be memcmp'ed.
+ */
+typedef struct {
+ unsigned char data[64];
+} secp256k1_ecdsa_signature;
+
+/** A pointer to a function to deterministically generate a nonce.
+ *
+ * Returns: 1 if a nonce was successfully generated. 0 will cause signing to fail.
+ * Out: nonce32: pointer to a 32-byte array to be filled by the function.
+ * In: msg32: the 32-byte message hash being verified (will not be NULL)
+ * key32: pointer to a 32-byte secret key (will not be NULL)
+ * algo16: pointer to a 16-byte array describing the signature
+ * algorithm (will be NULL for ECDSA for compatibility).
+ * data: Arbitrary data pointer that is passed through.
+ * attempt: how many iterations we have tried to find a nonce.
+ * This will almost always be 0, but different attempt values
+ * are required to result in a different nonce.
+ *
+ * Except for test cases, this function should compute some cryptographic hash of
+ * the message, the algorithm, the key and the attempt.
+ */
+typedef int (*secp256k1_nonce_function)(
+ unsigned char *nonce32,
+ const unsigned char *msg32,
+ const unsigned char *key32,
+ const unsigned char *algo16,
+ void *data,
+ unsigned int attempt
+);
+
+# if !defined(SECP256K1_GNUC_PREREQ)
+# if defined(__GNUC__)&&defined(__GNUC_MINOR__)
+# define SECP256K1_GNUC_PREREQ(_maj,_min) \
+ ((__GNUC__<<16)+__GNUC_MINOR__>=((_maj)<<16)+(_min))
+# else
+# define SECP256K1_GNUC_PREREQ(_maj,_min) 0
+# endif
+# endif
+
+# if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L) )
+# if SECP256K1_GNUC_PREREQ(2,7)
+# define SECP256K1_INLINE __inline__
+# elif (defined(_MSC_VER))
+# define SECP256K1_INLINE __inline
+# else
+# define SECP256K1_INLINE
+# endif
+# else
+# define SECP256K1_INLINE inline
+# endif
+
+#ifndef SECP256K1_API
+# if defined(_WIN32)
+# ifdef SECP256K1_BUILD
+# define SECP256K1_API __declspec(dllexport)
+# else
+# define SECP256K1_API
+# endif
+# elif defined(__GNUC__) && defined(SECP256K1_BUILD)
+# define SECP256K1_API __attribute__ ((visibility ("default")))
+# else
+# define SECP256K1_API
+# endif
+#endif
+
+/**Warning attributes
+ * NONNULL is not used if SECP256K1_BUILD is set to avoid the compiler optimizing out
+ * some paranoid null checks. */
+# if defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
+# define SECP256K1_WARN_UNUSED_RESULT __attribute__ ((__warn_unused_result__))
+# else
+# define SECP256K1_WARN_UNUSED_RESULT
+# endif
+# if !defined(SECP256K1_BUILD) && defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
+# define SECP256K1_ARG_NONNULL(_x) __attribute__ ((__nonnull__(_x)))
+# else
+# define SECP256K1_ARG_NONNULL(_x)
+# endif
+
+/** Flags to pass to secp256k1_context_create. */
+# define SECP256K1_CONTEXT_VERIFY (1 << 0)
+# define SECP256K1_CONTEXT_SIGN (1 << 1)
+
+/** Flag to pass to secp256k1_ec_pubkey_serialize and secp256k1_ec_privkey_export. */
+# define SECP256K1_EC_COMPRESSED (1 << 0)
+
+/** Create a secp256k1 context object.
+ *
+ * Returns: a newly created context object.
+ * In: flags: which parts of the context to initialize.
+ */
+SECP256K1_API secp256k1_context* secp256k1_context_create(
+ unsigned int flags
+) SECP256K1_WARN_UNUSED_RESULT;
+
+/** Copies a secp256k1 context object.
+ *
+ * Returns: a newly created context object.
+ * Args: ctx: an existing context to copy (cannot be NULL)
+ */
+SECP256K1_API secp256k1_context* secp256k1_context_clone(
+ const secp256k1_context* ctx
+) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT;
+
+/** Destroy a secp256k1 context object.
+ *
+ * The context pointer may not be used afterwards.
+ * Args: ctx: an existing context to destroy (cannot be NULL)
+ */
+SECP256K1_API void secp256k1_context_destroy(
+ secp256k1_context* ctx
+);
+
+/** Set a callback function to be called when an illegal argument is passed to
+ * an API call. It will only trigger for violations that are mentioned
+ * explicitly in the header.
+ *
+ * The philosophy is that these shouldn't be dealt with through a
+ * specific return value, as calling code should not have branches to deal with
+ * the case that this code itself is broken.
+ *
+ * On the other hand, during debug stage, one would want to be informed about
+ * such mistakes, and the default (crashing) may be inadvisable.
+ * When this callback is triggered, the API function called is guaranteed not
+ * to cause a crash, though its return value and output arguments are
+ * undefined.
+ *
+ * Args: ctx: an existing context object (cannot be NULL)
+ * In: fun: a pointer to a function to call when an illegal argument is
+ * passed to the API, taking a message and an opaque pointer
+ * (NULL restores a default handler that calls abort).
+ * data: the opaque pointer to pass to fun above.
+ */
+SECP256K1_API void secp256k1_context_set_illegal_callback(
+ secp256k1_context* ctx,
+ void (*fun)(const char* message, void* data),
+ const void* data
+) SECP256K1_ARG_NONNULL(1);
+
+/** Set a callback function to be called when an internal consistency check
+ * fails. The default is crashing.
+ *
+ * This can only trigger in case of a hardware failure, miscompilation,
+ * memory corruption, serious bug in the library, or other error would can
+ * otherwise result in undefined behaviour. It will not trigger due to mere
+ * incorrect usage of the API (see secp256k1_context_set_illegal_callback
+ * for that). After this callback returns, anything may happen, including
+ * crashing.
+ *
+ * Args: ctx: an existing context object (cannot be NULL)
+ * In: fun: a pointer to a function to call when an interal error occurs,
+ * taking a message and an opaque pointer (NULL restores a default
+ * handler that calls abort).
+ * data: the opaque pointer to pass to fun above.
+ */
+SECP256K1_API void secp256k1_context_set_error_callback(
+ secp256k1_context* ctx,
+ void (*fun)(const char* message, void* data),
+ const void* data
+) SECP256K1_ARG_NONNULL(1);
+
+/** Parse a variable-length public key into the pubkey object.
+ *
+ * Returns: 1 if the public key was fully valid.
+ * 0 if the public key could not be parsed or is invalid.
+ * Args: ctx: a secp256k1 context object.
+ * Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to a
+ * parsed version of input. If not, its value is undefined.
+ * In: input: pointer to a serialized public key
+ * inputlen: length of the array pointed to by input
+ *
+ * This function supports parsing compressed (33 bytes, header byte 0x02 or
+ * 0x03), uncompressed (65 bytes, header byte 0x04), or hybrid (65 bytes, header
+ * byte 0x06 or 0x07) format public keys.
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_parse(
+ const secp256k1_context* ctx,
+ secp256k1_pubkey* pubkey,
+ const unsigned char *input,
+ size_t inputlen
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Serialize a pubkey object into a serialized byte sequence.
+ *
+ * Returns: 1 always.
+ * Args: ctx: a secp256k1 context object.
+ * Out: output: a pointer to a 65-byte (if compressed==0) or 33-byte (if
+ * compressed==1) byte array to place the serialized key in.
+ * outputlen: a pointer to an integer which will contain the serialized
+ * size.
+ * In: pubkey: a pointer to a secp256k1_pubkey containing an initialized
+ * public key.
+ * flags: SECP256K1_EC_COMPRESSED if serialization should be in
+ * compressed format.
+ */
+SECP256K1_API int secp256k1_ec_pubkey_serialize(
+ const secp256k1_context* ctx,
+ unsigned char *output,
+ size_t *outputlen,
+ const secp256k1_pubkey* pubkey,
+ unsigned int flags
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** Parse a DER ECDSA signature.
+ *
+ * Returns: 1 when the signature could be parsed, 0 otherwise.
+ * Args: ctx: a secp256k1 context object
+ * Out: sig: a pointer to a signature object
+ * In: input: a pointer to the signature to be parsed
+ * inputlen: the length of the array pointed to be input
+ *
+ * Note that this function also supports some violations of DER and even BER.
+ */
+SECP256K1_API int secp256k1_ecdsa_signature_parse_der(
+ const secp256k1_context* ctx,
+ secp256k1_ecdsa_signature* sig,
+ const unsigned char *input,
+ size_t inputlen
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Serialize an ECDSA signature in DER format.
+ *
+ * Returns: 1 if enough space was available to serialize, 0 otherwise
+ * Args: ctx: a secp256k1 context object
+ * Out: output: a pointer to an array to store the DER serialization
+ * In/Out: outputlen: a pointer to a length integer. Initially, this integer
+ * should be set to the length of output. After the call
+ * it will be set to the length of the serialization (even
+ * if 0 was returned).
+ * In: sig: a pointer to an initialized signature object
+ */
+SECP256K1_API int secp256k1_ecdsa_signature_serialize_der(
+ const secp256k1_context* ctx,
+ unsigned char *output,
+ size_t *outputlen,
+ const secp256k1_ecdsa_signature* sig
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** Verify an ECDSA signature.
+ *
+ * Returns: 1: correct signature
+ * 0: incorrect or unparseable signature
+ * Args: ctx: a secp256k1 context object, initialized for verification.
+ * In: sig: the signature being verified (cannot be NULL)
+ * msg32: the 32-byte message hash being verified (cannot be NULL)
+ * pubkey: pointer to an initialized public key to verify with (cannot be NULL)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(
+ const secp256k1_context* ctx,
+ const secp256k1_ecdsa_signature *sig,
+ const unsigned char *msg32,
+ const secp256k1_pubkey *pubkey
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** An implementation of RFC6979 (using HMAC-SHA256) as nonce generation function.
+ * If a data pointer is passed, it is assumed to be a pointer to 32 bytes of
+ * extra entropy.
+ */
+extern const secp256k1_nonce_function secp256k1_nonce_function_rfc6979;
+
+/** A default safe nonce generation function (currently equal to secp256k1_nonce_function_rfc6979). */
+extern const secp256k1_nonce_function secp256k1_nonce_function_default;
+
+/** Create an ECDSA signature.
+ *
+ * Returns: 1: signature created
+ * 0: the nonce generation function failed, or the private key was invalid.
+ * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
+ * Out: sig: pointer to an array where the signature will be placed (cannot be NULL)
+ * In: msg32: the 32-byte message hash being signed (cannot be NULL)
+ * seckey: pointer to a 32-byte secret key (cannot be NULL)
+ * noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used
+ * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL)
+ *
+ * The sig always has an s value in the lower half of the range (From 0x1
+ * to 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,
+ * inclusive), unlike many other implementations.
+ *
+ * With ECDSA a third-party can can forge a second distinct signature
+ * of the same message given a single initial signature without knowing
+ * the key by setting s to its additive inverse mod-order, 'flipping' the
+ * sign of the random point R which is not included in the signature.
+ * Since the forgery is of the same message this isn't universally
+ * problematic, but in systems where message malleability or uniqueness
+ * of signatures is important this can cause issues. This forgery can be
+ * blocked by all verifiers forcing signers to use a canonical form. The
+ * lower-S form reduces the size of signatures slightly on average when
+ * variable length encodings (such as DER) are used and is cheap to
+ * verify, making it a good choice. Security of always using lower-S is
+ * assured because anyone can trivially modify a signature after the
+ * fact to enforce this property. Adjusting it inside the signing
+ * function avoids the need to re-serialize or have curve specific
+ * constants outside of the library. By always using a canonical form
+ * even in applications where it isn't needed it becomes possible to
+ * impose a requirement later if a need is discovered.
+ * No other forms of ECDSA malleability are known and none seem likely,
+ * but there is no formal proof that ECDSA, even with this additional
+ * restriction, is free of other malleability. Commonly used serialization
+ * schemes will also accept various non-unique encodings, so care should
+ * be taken when this property is required for an application.
+ */
+SECP256K1_API int secp256k1_ecdsa_sign(
+ const secp256k1_context* ctx,
+ secp256k1_ecdsa_signature *sig,
+ const unsigned char *msg32,
+ const unsigned char *seckey,
+ secp256k1_nonce_function noncefp,
+ const void *ndata
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** Verify an ECDSA secret key.
+ *
+ * Returns: 1: secret key is valid
+ * 0: secret key is invalid
+ * Args: ctx: pointer to a context object (cannot be NULL)
+ * In: seckey: pointer to a 32-byte secret key (cannot be NULL)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify(
+ const secp256k1_context* ctx,
+ const unsigned char *seckey
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
+
+/** Compute the public key for a secret key.
+ *
+ * Returns: 1: secret was valid, public key stores
+ * 0: secret was invalid, try again
+ * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
+ * Out: pubkey: pointer to the created public key (cannot be NULL)
+ * In: seckey: pointer to a 32-byte private key (cannot be NULL)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create(
+ const secp256k1_context* ctx,
+ secp256k1_pubkey *pubkey,
+ const unsigned char *seckey
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Export a private key in BER format.
+ *
+ * Returns: 1 if the private key was valid.
+ * Args: ctx: pointer to a context object, initialized for signing (cannot
+ * be NULL)
+ * Out: privkey: pointer to an array for storing the private key in BER.
+ * Should have space for 279 bytes, and cannot be NULL.
+ * privkeylen: Pointer to an int where the length of the private key in
+ * privkey will be stored.
+ * In: seckey: pointer to a 32-byte secret key to export.
+ * flags: SECP256K1_EC_COMPRESSED if the key should be exported in
+ * compressed format.
+ *
+ * This function is purely meant for compatibility with applications that
+ * require BER encoded keys. When working with secp256k1-specific code, the
+ * simple 32-byte private keys are sufficient.
+ *
+ * Note that this function does not guarantee correct DER output. It is
+ * guaranteed to be parsable by secp256k1_ec_privkey_import.
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_export(
+ const secp256k1_context* ctx,
+ unsigned char *privkey,
+ size_t *privkeylen,
+ const unsigned char *seckey,
+ unsigned int flags
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** Import a private key in DER format.
+ * Returns: 1 if a private key was extracted.
+ * Args: ctx: pointer to a context object (cannot be NULL).
+ * Out: seckey: pointer to a 32-byte array for storing the private key.
+ * (cannot be NULL).
+ * In: privkey: pointer to a private key in DER format (cannot be NULL).
+ * privkeylen: length of the DER private key pointed to be privkey.
+ *
+ * This function will accept more than just strict DER, and even allow some BER
+ * violations. The public key stored inside the DER-encoded private key is not
+ * verified for correctness, nor are the curve parameters. Use this function
+ * only if you know in advance it is supposed to contain a secp256k1 private
+ * key.
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_import(
+ const secp256k1_context* ctx,
+ unsigned char *seckey,
+ const unsigned char *privkey,
+ size_t privkeylen
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Tweak a private key by adding tweak to it.
+ * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
+ * uniformly random 32-byte arrays, or if the resulting private key
+ * would be invalid (only when the tweak is the complement of the
+ * private key). 1 otherwise.
+ * Args: ctx: pointer to a context object (cannot be NULL).
+ * In/Out: seckey: pointer to a 32-byte private key.
+ * In: tweak: pointer to a 32-byte tweak.
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_add(
+ const secp256k1_context* ctx,
+ unsigned char *seckey,
+ const unsigned char *tweak
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Tweak a public key by adding tweak times the generator to it.
+ * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
+ * uniformly random 32-byte arrays, or if the resulting public key
+ * would be invalid (only when the tweak is the complement of the
+ * corresponding private key). 1 otherwise.
+ * Args: ctx: pointer to a context object initialized for validation
+ * (cannot be NULL).
+ * In/Out: pubkey: pointer to a public key object.
+ * In: tweak: pointer to a 32-byte tweak.
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add(
+ const secp256k1_context* ctx,
+ secp256k1_pubkey *pubkey,
+ const unsigned char *tweak
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Tweak a private key by multiplying it by a tweak.
+ * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
+ * uniformly random 32-byte arrays, or equal to zero. 1 otherwise.
+ * Args: ctx: pointer to a context object (cannot be NULL).
+ * In/Out: seckey: pointer to a 32-byte private key.
+ * In: tweak: pointer to a 32-byte tweak.
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_mul(
+ const secp256k1_context* ctx,
+ unsigned char *seckey,
+ const unsigned char *tweak
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Tweak a public key by multiplying it by a tweak value.
+ * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
+ * uniformly random 32-byte arrays, or equal to zero. 1 otherwise.
+ * Args: ctx: pointer to a context object initialized for validation
+ * (cannot be NULL).
+ * In/Out: pubkey: pointer to a public key obkect.
+ * In: tweak: pointer to a 32-byte tweak.
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul(
+ const secp256k1_context* ctx,
+ secp256k1_pubkey *pubkey,
+ const unsigned char *tweak
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Updates the context randomization.
+ * Returns: 1: randomization successfully updated
+ * 0: error
+ * Args: ctx: pointer to a context object (cannot be NULL)
+ * In: seed32: pointer to a 32-byte random seed (NULL resets to initial state)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(
+ secp256k1_context* ctx,
+ const unsigned char *seed32
+) SECP256K1_ARG_NONNULL(1);
+
+/** Add a number of public keys together.
+ * Returns: 1: the sum of the public keys is valid.
+ * 0: the sum of the public keys is not valid.
+ * Args: ctx: pointer to a context object
+ * Out: out: pointer to pubkey for placing the resulting public key
+ * (cannot be NULL)
+ * In: ins: pointer to array of pointers to public keys (cannot be NULL)
+ * n: the number of public keys to add together (must be at least 1)
+ * Use secp256k1_ec_pubkey_compress and secp256k1_ec_pubkey_decompress if the
+ * uncompressed format is needed.
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_combine(
+ const secp256k1_context* ctx,
+ secp256k1_pubkey *out,
+ const secp256k1_pubkey * const * ins,
+ int n
+) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+# ifdef __cplusplus
+}
+# endif
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/include/secp256k1_ecdh.h b/crypto/secp256k1/libsecp256k1/include/secp256k1_ecdh.h
new file mode 100644
index 000000000..db520f446
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/include/secp256k1_ecdh.h
@@ -0,0 +1,30 @@
+#ifndef _SECP256K1_ECDH_
+# define _SECP256K1_ECDH_
+
+# include "secp256k1.h"
+
+# ifdef __cplusplus
+extern "C" {
+# endif
+
+/** Compute an EC Diffie-Hellman secret in constant time
+ * Returns: 1: exponentiation was successful
+ * 0: scalar was invalid (zero or overflow)
+ * Args: ctx: pointer to a context object (cannot be NULL)
+ * Out: result: a 32-byte array which will be populated by an ECDH
+ * secret computed from the point and scalar
+ * In: point: pointer to a public point
+ * scalar: a 32-byte scalar with which to multiply the point
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdh(
+ const secp256k1_context* ctx,
+ unsigned char *result,
+ const secp256k1_pubkey *point,
+ const unsigned char *scalar
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+# ifdef __cplusplus
+}
+# endif
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/include/secp256k1_recovery.h b/crypto/secp256k1/libsecp256k1/include/secp256k1_recovery.h
new file mode 100644
index 000000000..c9b8c0a30
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/include/secp256k1_recovery.h
@@ -0,0 +1,110 @@
+#ifndef _SECP256K1_RECOVERY_
+# define _SECP256K1_RECOVERY_
+
+# include "secp256k1.h"
+
+# ifdef __cplusplus
+extern "C" {
+# endif
+
+/** Opaque data structured that holds a parsed ECDSA signature,
+ * supporting pubkey recovery.
+ *
+ * The exact representation of data inside is implementation defined and not
+ * guaranteed to be portable between different platforms or versions. It is
+ * however guaranteed to be 65 bytes in size, and can be safely copied/moved.
+ * If you need to convert to a format suitable for storage or transmission, use
+ * the secp256k1_ecdsa_signature_serialize_* and
+ * secp256k1_ecdsa_signature_parse_* functions.
+ *
+ * Furthermore, it is guaranteed that identical signatures (including their
+ * recoverability) will have identical representation, so they can be
+ * memcmp'ed.
+ */
+typedef struct {
+ unsigned char data[65];
+} secp256k1_ecdsa_recoverable_signature;
+
+/** Parse a compact ECDSA signature (64 bytes + recovery id).
+ *
+ * Returns: 1 when the signature could be parsed, 0 otherwise
+ * Args: ctx: a secp256k1 context object
+ * Out: sig: a pointer to a signature object
+ * In: input64: a pointer to a 64-byte compact signature
+ * recid: the recovery id (0, 1, 2 or 3)
+ */
+SECP256K1_API int secp256k1_ecdsa_recoverable_signature_parse_compact(
+ const secp256k1_context* ctx,
+ secp256k1_ecdsa_recoverable_signature* sig,
+ const unsigned char *input64,
+ int recid
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Convert a recoverable signature into a normal signature.
+ *
+ * Returns: 1
+ * Out: sig: a pointer to a normal signature (cannot be NULL).
+ * In: sigin: a pointer to a recoverable signature (cannot be NULL).
+ */
+SECP256K1_API int secp256k1_ecdsa_recoverable_signature_convert(
+ const secp256k1_context* ctx,
+ secp256k1_ecdsa_signature* sig,
+ const secp256k1_ecdsa_recoverable_signature* sigin
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Serialize an ECDSA signature in compact format (64 bytes + recovery id).
+ *
+ * Returns: 1
+ * Args: ctx: a secp256k1 context object
+ * Out: output64: a pointer to a 64-byte array of the compact signature (cannot be NULL)
+ * recid: a pointer to an integer to hold the recovery id (can be NULL).
+ * In: sig: a pointer to an initialized signature object (cannot be NULL)
+ */
+SECP256K1_API int secp256k1_ecdsa_recoverable_signature_serialize_compact(
+ const secp256k1_context* ctx,
+ unsigned char *output64,
+ int *recid,
+ const secp256k1_ecdsa_recoverable_signature* sig
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4);
+
+/** Create a recoverable ECDSA signature.
+ *
+ * Returns: 1: signature created
+ * 0: the nonce generation function failed, or the private key was invalid.
+ * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
+ * Out: sig: pointer to an array where the signature will be placed (cannot be NULL)
+ * In: msg32: the 32-byte message hash being signed (cannot be NULL)
+ * seckey: pointer to a 32-byte secret key (cannot be NULL)
+ * noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used
+ * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL)
+ */
+SECP256K1_API int secp256k1_ecdsa_sign_recoverable(
+ const secp256k1_context* ctx,
+ secp256k1_ecdsa_recoverable_signature *sig,
+ const unsigned char *msg32,
+ const unsigned char *seckey,
+ secp256k1_nonce_function noncefp,
+ const void *ndata
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** Recover an ECDSA public key from a signature.
+ *
+ * Returns: 1: public key successfully recovered (which guarantees a correct signature).
+ * 0: otherwise.
+ * Args: ctx: pointer to a context object, initialized for verification (cannot be NULL)
+ * Out: pubkey: pointer to the recoved public key (cannot be NULL)
+ * In: sig: pointer to initialized signature that supports pubkey recovery (cannot be NULL)
+ * msg32: the 32-byte message hash assumed to be signed (cannot be NULL)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover(
+ const secp256k1_context* ctx,
+ secp256k1_pubkey *pubkey,
+ const secp256k1_ecdsa_recoverable_signature *sig,
+ const unsigned char *msg32
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+# ifdef __cplusplus
+}
+# endif
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/include/secp256k1_schnorr.h b/crypto/secp256k1/libsecp256k1/include/secp256k1_schnorr.h
new file mode 100644
index 000000000..49354933d
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/include/secp256k1_schnorr.h
@@ -0,0 +1,173 @@
+#ifndef _SECP256K1_SCHNORR_
+# define _SECP256K1_SCHNORR_
+
+# include "secp256k1.h"
+
+# ifdef __cplusplus
+extern "C" {
+# endif
+
+/** Create a signature using a custom EC-Schnorr-SHA256 construction. It
+ * produces non-malleable 64-byte signatures which support public key recovery
+ * batch validation, and multiparty signing.
+ * Returns: 1: signature created
+ * 0: the nonce generation function failed, or the private key was
+ * invalid.
+ * Args: ctx: pointer to a context object, initialized for signing
+ * (cannot be NULL)
+ * Out: sig64: pointer to a 64-byte array where the signature will be
+ * placed (cannot be NULL)
+ * In: msg32: the 32-byte message hash being signed (cannot be NULL)
+ * seckey: pointer to a 32-byte secret key (cannot be NULL)
+ * noncefp:pointer to a nonce generation function. If NULL,
+ * secp256k1_nonce_function_default is used
+ * ndata: pointer to arbitrary data used by the nonce generation
+ * function (can be NULL)
+ */
+SECP256K1_API int secp256k1_schnorr_sign(
+ const secp256k1_context* ctx,
+ unsigned char *sig64,
+ const unsigned char *msg32,
+ const unsigned char *seckey,
+ secp256k1_nonce_function noncefp,
+ const void *ndata
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** Verify a signature created by secp256k1_schnorr_sign.
+ * Returns: 1: correct signature
+ * 0: incorrect signature
+ * Args: ctx: a secp256k1 context object, initialized for verification.
+ * In: sig64: the 64-byte signature being verified (cannot be NULL)
+ * msg32: the 32-byte message hash being verified (cannot be NULL)
+ * pubkey: the public key to verify with (cannot be NULL)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_verify(
+ const secp256k1_context* ctx,
+ const unsigned char *sig64,
+ const unsigned char *msg32,
+ const secp256k1_pubkey *pubkey
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** Recover an EC public key from a Schnorr signature created using
+ * secp256k1_schnorr_sign.
+ * Returns: 1: public key successfully recovered (which guarantees a correct
+ * signature).
+ * 0: otherwise.
+ * Args: ctx: pointer to a context object, initialized for
+ * verification (cannot be NULL)
+ * Out: pubkey: pointer to a pubkey to set to the recovered public key
+ * (cannot be NULL).
+ * In: sig64: signature as 64 byte array (cannot be NULL)
+ * msg32: the 32-byte message hash assumed to be signed (cannot
+ * be NULL)
+ */
+SECP256K1_API int secp256k1_schnorr_recover(
+ const secp256k1_context* ctx,
+ secp256k1_pubkey *pubkey,
+ const unsigned char *sig64,
+ const unsigned char *msg32
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** Generate a nonce pair deterministically for use with
+ * secp256k1_schnorr_partial_sign.
+ * Returns: 1: valid nonce pair was generated.
+ * 0: otherwise (nonce generation function failed)
+ * Args: ctx: pointer to a context object, initialized for signing
+ * (cannot be NULL)
+ * Out: pubnonce: public side of the nonce (cannot be NULL)
+ * privnonce32: private side of the nonce (32 byte) (cannot be NULL)
+ * In: msg32: the 32-byte message hash assumed to be signed (cannot
+ * be NULL)
+ * sec32: the 32-byte private key (cannot be NULL)
+ * noncefp: pointer to a nonce generation function. If NULL,
+ * secp256k1_nonce_function_default is used
+ * noncedata: pointer to arbitrary data used by the nonce generation
+ * function (can be NULL)
+ *
+ * Do not use the output as a private/public key pair for signing/validation.
+ */
+SECP256K1_API int secp256k1_schnorr_generate_nonce_pair(
+ const secp256k1_context* ctx,
+ secp256k1_pubkey *pubnonce,
+ unsigned char *privnonce32,
+ const unsigned char *msg32,
+ const unsigned char *sec32,
+ secp256k1_nonce_function noncefp,
+ const void* noncedata
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Produce a partial Schnorr signature, which can be combined using
+ * secp256k1_schnorr_partial_combine, to end up with a full signature that is
+ * verifiable using secp256k1_schnorr_verify.
+ * Returns: 1: signature created succesfully.
+ * 0: no valid signature exists with this combination of keys, nonces
+ * and message (chance around 1 in 2^128)
+ * -1: invalid private key, nonce, or public nonces.
+ * Args: ctx: pointer to context object, initialized for signing (cannot
+ * be NULL)
+ * Out: sig64: pointer to 64-byte array to put partial signature in
+ * In: msg32: pointer to 32-byte message to sign
+ * sec32: pointer to 32-byte private key
+ * pubnonce_others: pointer to pubkey containing the sum of the other's
+ * nonces (see secp256k1_ec_pubkey_combine)
+ * secnonce32: pointer to 32-byte array containing our nonce
+ *
+ * The intended procedure for creating a multiparty signature is:
+ * - Each signer S[i] with private key x[i] and public key Q[i] runs
+ * secp256k1_schnorr_generate_nonce_pair to produce a pair (k[i],R[i]) of
+ * private/public nonces.
+ * - All signers communicate their public nonces to each other (revealing your
+ * private nonce can lead to discovery of your private key, so it should be
+ * considered secret).
+ * - All signers combine all the public nonces they received (excluding their
+ * own) using secp256k1_ec_pubkey_combine to obtain an
+ * Rall[i] = sum(R[0..i-1,i+1..n]).
+ * - All signers produce a partial signature using
+ * secp256k1_schnorr_partial_sign, passing in their own private key x[i],
+ * their own private nonce k[i], and the sum of the others' public nonces
+ * Rall[i].
+ * - All signers communicate their partial signatures to each other.
+ * - Someone combines all partial signatures using
+ * secp256k1_schnorr_partial_combine, to obtain a full signature.
+ * - The resulting signature is validatable using secp256k1_schnorr_verify, with
+ * public key equal to the result of secp256k1_ec_pubkey_combine of the
+ * signers' public keys (sum(Q[0..n])).
+ *
+ * Note that secp256k1_schnorr_partial_combine and secp256k1_ec_pubkey_combine
+ * function take their arguments in any order, and it is possible to
+ * pre-combine several inputs already with one call, and add more inputs later
+ * by calling the function again (they are commutative and associative).
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_partial_sign(
+ const secp256k1_context* ctx,
+ unsigned char *sig64,
+ const unsigned char *msg32,
+ const unsigned char *sec32,
+ const secp256k1_pubkey *pubnonce_others,
+ const unsigned char *secnonce32
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6);
+
+/** Combine multiple Schnorr partial signatures.
+ * Returns: 1: the passed signatures were succesfully combined.
+ * 0: the resulting signature is not valid (chance of 1 in 2^256)
+ * -1: some inputs were invalid, or the signatures were not created
+ * using the same set of nonces
+ * Args: ctx: pointer to a context object
+ * Out: sig64: pointer to a 64-byte array to place the combined signature
+ * (cannot be NULL)
+ * In: sig64sin: pointer to an array of n pointers to 64-byte input
+ * signatures
+ * n: the number of signatures to combine (at least 1)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_partial_combine(
+ const secp256k1_context* ctx,
+ unsigned char *sig64,
+ const unsigned char * const * sig64sin,
+ int n
+) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+# ifdef __cplusplus
+}
+# endif
+
+#endif
diff --git a/crypto/secp256k1/secp256k1/libsecp256k1.pc.in b/crypto/secp256k1/libsecp256k1/libsecp256k1.pc.in
index 1c72dd000..1c72dd000 100644
--- a/crypto/secp256k1/secp256k1/libsecp256k1.pc.in
+++ b/crypto/secp256k1/libsecp256k1/libsecp256k1.pc.in
diff --git a/crypto/secp256k1/secp256k1/obj/.gitignore b/crypto/secp256k1/libsecp256k1/obj/.gitignore
index e69de29bb..e69de29bb 100644
--- a/crypto/secp256k1/secp256k1/obj/.gitignore
+++ b/crypto/secp256k1/libsecp256k1/obj/.gitignore
diff --git a/crypto/secp256k1/libsecp256k1/src/basic-config.h b/crypto/secp256k1/libsecp256k1/src/basic-config.h
new file mode 100644
index 000000000..c4c16eb7c
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/basic-config.h
@@ -0,0 +1,32 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_BASIC_CONFIG_
+#define _SECP256K1_BASIC_CONFIG_
+
+#ifdef USE_BASIC_CONFIG
+
+#undef USE_ASM_X86_64
+#undef USE_ENDOMORPHISM
+#undef USE_FIELD_10X26
+#undef USE_FIELD_5X52
+#undef USE_FIELD_INV_BUILTIN
+#undef USE_FIELD_INV_NUM
+#undef USE_NUM_GMP
+#undef USE_NUM_NONE
+#undef USE_SCALAR_4X64
+#undef USE_SCALAR_8X32
+#undef USE_SCALAR_INV_BUILTIN
+#undef USE_SCALAR_INV_NUM
+
+#define USE_NUM_NONE 1
+#define USE_FIELD_INV_BUILTIN 1
+#define USE_SCALAR_INV_BUILTIN 1
+#define USE_FIELD_10X26 1
+#define USE_SCALAR_8X32 1
+
+#endif // USE_BASIC_CONFIG
+#endif // _SECP256K1_BASIC_CONFIG_
diff --git a/crypto/secp256k1/secp256k1/src/bench.h b/crypto/secp256k1/libsecp256k1/src/bench.h
index 0559b3e85..3a71b4aaf 100644
--- a/crypto/secp256k1/secp256k1/src/bench.h
+++ b/crypto/secp256k1/libsecp256k1/src/bench.h
@@ -20,7 +20,9 @@ static double gettimedouble(void) {
void print_number(double x) {
double y = x;
int c = 0;
- if (y < 0.0) y = -y;
+ if (y < 0.0) {
+ y = -y;
+ }
while (y < 100.0) {
y *= 10.0;
c++;
@@ -35,20 +37,28 @@ void run_benchmark(char *name, void (*benchmark)(void*), void (*setup)(void*), v
double max = 0.0;
for (i = 0; i < count; i++) {
double begin, total;
- if (setup) setup(data);
+ if (setup != NULL) {
+ setup(data);
+ }
begin = gettimedouble();
benchmark(data);
total = gettimedouble() - begin;
- if (teardown) teardown(data);
- if (total < min) min = total;
- if (total > max) max = total;
+ if (teardown != NULL) {
+ teardown(data);
+ }
+ if (total < min) {
+ min = total;
+ }
+ if (total > max) {
+ max = total;
+ }
sum += total;
}
printf("%s: min ", name);
print_number(min * 1000000.0 / iter);
printf("us / avg ");
print_number((sum / count) * 1000000.0 / iter);
- printf("us / avg ");
+ printf("us / max ");
print_number(max * 1000000.0 / iter);
printf("us\n");
}
diff --git a/crypto/secp256k1/libsecp256k1/src/bench_ecdh.c b/crypto/secp256k1/libsecp256k1/src/bench_ecdh.c
new file mode 100644
index 000000000..5a7c6376e
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/bench_ecdh.c
@@ -0,0 +1,53 @@
+/**********************************************************************
+ * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#include <string.h>
+
+#include "include/secp256k1.h"
+#include "include/secp256k1_ecdh.h"
+#include "util.h"
+#include "bench.h"
+
+typedef struct {
+ secp256k1_context *ctx;
+ secp256k1_pubkey point;
+ unsigned char scalar[32];
+} bench_ecdh_t;
+
+static void bench_ecdh_setup(void* arg) {
+ int i;
+ bench_ecdh_t *data = (bench_ecdh_t*)arg;
+ const unsigned char point[] = {
+ 0x03,
+ 0x54, 0x94, 0xc1, 0x5d, 0x32, 0x09, 0x97, 0x06,
+ 0xc2, 0x39, 0x5f, 0x94, 0x34, 0x87, 0x45, 0xfd,
+ 0x75, 0x7c, 0xe3, 0x0e, 0x4e, 0x8c, 0x90, 0xfb,
+ 0xa2, 0xba, 0xd1, 0x84, 0xf8, 0x83, 0xc6, 0x9f
+ };
+
+ data->ctx = secp256k1_context_create(0);
+ for (i = 0; i < 32; i++) {
+ data->scalar[i] = i + 1;
+ }
+ CHECK(secp256k1_ec_pubkey_parse(data->ctx, &data->point, point, sizeof(point)) == 1);
+}
+
+static void bench_ecdh(void* arg) {
+ int i;
+ unsigned char res[32];
+ bench_ecdh_t *data = (bench_ecdh_t*)arg;
+
+ for (i = 0; i < 20000; i++) {
+ CHECK(secp256k1_ecdh(data->ctx, res, &data->point, data->scalar) == 1);
+ }
+}
+
+int main(void) {
+ bench_ecdh_t data;
+
+ run_benchmark("ecdh", bench_ecdh, bench_ecdh_setup, NULL, &data, 10, 20000);
+ return 0;
+}
diff --git a/crypto/secp256k1/secp256k1/src/bench_internal.c b/crypto/secp256k1/libsecp256k1/src/bench_internal.c
index a960549b9..7809f5f8c 100644
--- a/crypto/secp256k1/secp256k1/src/bench_internal.c
+++ b/crypto/secp256k1/libsecp256k1/src/bench_internal.c
@@ -13,15 +13,17 @@
#include "field_impl.h"
#include "group_impl.h"
#include "scalar_impl.h"
+#include "ecmult_const_impl.h"
#include "ecmult_impl.h"
#include "bench.h"
+#include "secp256k1.c"
typedef struct {
- secp256k1_scalar_t scalar_x, scalar_y;
- secp256k1_fe_t fe_x, fe_y;
- secp256k1_ge_t ge_x, ge_y;
- secp256k1_gej_t gej_x, gej_y;
- unsigned char data[32];
+ secp256k1_scalar scalar_x, scalar_y;
+ secp256k1_fe fe_x, fe_y;
+ secp256k1_ge ge_x, ge_y;
+ secp256k1_gej gej_x, gej_y;
+ unsigned char data[64];
int wnaf[256];
} bench_inv_t;
@@ -51,6 +53,7 @@ void bench_setup(void* arg) {
secp256k1_gej_set_ge(&data->gej_x, &data->ge_x);
secp256k1_gej_set_ge(&data->gej_y, &data->ge_y);
memcpy(data->data, init_x, 32);
+ memcpy(data->data + 32, init_y, 32);
}
void bench_scalar_add(void* arg) {
@@ -95,8 +98,8 @@ void bench_scalar_split(void* arg) {
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 20000; i++) {
- secp256k1_scalar_t l, r;
- secp256k1_scalar_split_lambda_var(&l, &r, &data->scalar_x);
+ secp256k1_scalar l, r;
+ secp256k1_scalar_split_lambda(&l, &r, &data->scalar_x);
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
@@ -193,7 +196,7 @@ void bench_group_double_var(void* arg) {
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 200000; i++) {
- secp256k1_gej_double_var(&data->gej_x, &data->gej_x);
+ secp256k1_gej_double_var(&data->gej_x, &data->gej_x, NULL);
}
}
@@ -202,7 +205,7 @@ void bench_group_add_var(void* arg) {
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 200000; i++) {
- secp256k1_gej_add_var(&data->gej_x, &data->gej_x, &data->gej_y);
+ secp256k1_gej_add_var(&data->gej_x, &data->gej_x, &data->gej_y, NULL);
}
}
@@ -220,7 +223,7 @@ void bench_group_add_affine_var(void* arg) {
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 200000; i++) {
- secp256k1_gej_add_ge_var(&data->gej_x, &data->gej_x, &data->ge_y);
+ secp256k1_gej_add_ge_var(&data->gej_x, &data->gej_x, &data->ge_y, NULL);
}
}
@@ -229,7 +232,17 @@ void bench_ecmult_wnaf(void* arg) {
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 20000; i++) {
- secp256k1_ecmult_wnaf(data->wnaf, &data->scalar_x, WINDOW_A);
+ secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar_x, WINDOW_A);
+ secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
+ }
+}
+
+void bench_wnaf_const(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 20000; i++) {
+ secp256k1_wnaf_const(data->wnaf, data->scalar_x, WINDOW_A);
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
@@ -265,11 +278,27 @@ void bench_rfc6979_hmac_sha256(void* arg) {
secp256k1_rfc6979_hmac_sha256_t rng;
for (i = 0; i < 20000; i++) {
- secp256k1_rfc6979_hmac_sha256_initialize(&rng, data->data, 32, data->data, 32, NULL, 0);
+ secp256k1_rfc6979_hmac_sha256_initialize(&rng, data->data, 64);
secp256k1_rfc6979_hmac_sha256_generate(&rng, data->data, 32);
}
}
+void bench_context_verify(void* arg) {
+ int i;
+ (void)arg;
+ for (i = 0; i < 20; i++) {
+ secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_VERIFY));
+ }
+}
+
+void bench_context_sign(void* arg) {
+ int i;
+ (void)arg;
+ for (i = 0; i < 200; i++) {
+ secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_SIGN));
+ }
+}
+
int have_flag(int argc, char** argv, char *flag) {
char** argm = argv + argc;
@@ -278,7 +307,9 @@ int have_flag(int argc, char** argv, char *flag) {
return 1;
}
while (argv != NULL && argv != argm) {
- if (strcmp(*argv, flag) == 0) return 1;
+ if (strcmp(*argv, flag) == 0) {
+ return 1;
+ }
argv++;
}
return 0;
@@ -309,10 +340,15 @@ int main(int argc, char **argv) {
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, 200000);
+ if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "hmac")) run_benchmark("hash_hmac_sha256", bench_hmac_sha256, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "rng6979")) run_benchmark("hash_rfc6979_hmac_sha256", bench_rfc6979_hmac_sha256, bench_setup, NULL, &data, 10, 20000);
+
+ if (have_flag(argc, argv, "context") || have_flag(argc, argv, "verify")) run_benchmark("context_verify", bench_context_verify, bench_setup, NULL, &data, 10, 20);
+ if (have_flag(argc, argv, "context") || have_flag(argc, argv, "sign")) run_benchmark("context_sign", bench_context_sign, bench_setup, NULL, &data, 10, 200);
+
return 0;
}
diff --git a/crypto/secp256k1/secp256k1/src/bench_recover.c b/crypto/secp256k1/libsecp256k1/src/bench_recover.c
index 6991cc9d6..6489378cc 100644
--- a/crypto/secp256k1/secp256k1/src/bench_recover.c
+++ b/crypto/secp256k1/libsecp256k1/src/bench_recover.c
@@ -1,14 +1,16 @@
/**********************************************************************
- * Copyright (c) 2014 Pieter Wuille *
+ * Copyright (c) 2014-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include "include/secp256k1.h"
+#include "include/secp256k1_recovery.h"
#include "util.h"
#include "bench.h"
typedef struct {
+ secp256k1_context *ctx;
unsigned char msg[32];
unsigned char sig[64];
} bench_recover_t;
@@ -16,16 +18,20 @@ typedef struct {
void bench_recover(void* arg) {
int i;
bench_recover_t *data = (bench_recover_t*)arg;
- unsigned char pubkey[33];
+ secp256k1_pubkey pubkey;
+ unsigned char pubkeyc[33];
for (i = 0; i < 20000; i++) {
int j;
- int pubkeylen = 33;
- CHECK(secp256k1_ecdsa_recover_compact(data->msg, data->sig, pubkey, &pubkeylen, 1, i % 2));
+ size_t pubkeylen = 33;
+ secp256k1_ecdsa_recoverable_signature sig;
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(data->ctx, &sig, data->sig, i % 2));
+ CHECK(secp256k1_ecdsa_recover(data->ctx, &pubkey, &sig, data->msg));
+ CHECK(secp256k1_ec_pubkey_serialize(data->ctx, pubkeyc, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED));
for (j = 0; j < 32; j++) {
data->sig[j + 32] = data->msg[j]; /* Move former message to S. */
data->msg[j] = data->sig[j]; /* Move former R to message. */
- data->sig[j] = pubkey[j + 1]; /* Move recovered pubkey X coordinate to R (which must be a valid X coordinate). */
+ data->sig[j] = pubkeyc[j + 1]; /* Move recovered pubkey X coordinate to R (which must be a valid X coordinate). */
}
}
}
@@ -34,16 +40,21 @@ void bench_recover_setup(void* arg) {
int i;
bench_recover_t *data = (bench_recover_t*)arg;
- for (i = 0; i < 32; i++) data->msg[i] = 1 + i;
- for (i = 0; i < 64; i++) data->sig[i] = 65 + i;
+ for (i = 0; i < 32; i++) {
+ data->msg[i] = 1 + i;
+ }
+ for (i = 0; i < 64; i++) {
+ data->sig[i] = 65 + i;
+ }
}
int main(void) {
bench_recover_t data;
- secp256k1_start(SECP256K1_START_VERIFY);
+
+ data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
run_benchmark("ecdsa_recover", bench_recover, bench_recover_setup, NULL, &data, 10, 20000);
- secp256k1_stop();
+ secp256k1_context_destroy(data.ctx);
return 0;
}
diff --git a/crypto/secp256k1/libsecp256k1/src/bench_schnorr_verify.c b/crypto/secp256k1/libsecp256k1/src/bench_schnorr_verify.c
new file mode 100644
index 000000000..5f137dda2
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/bench_schnorr_verify.c
@@ -0,0 +1,73 @@
+/**********************************************************************
+ * Copyright (c) 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#include <stdio.h>
+#include <string.h>
+
+#include "include/secp256k1.h"
+#include "include/secp256k1_schnorr.h"
+#include "util.h"
+#include "bench.h"
+
+typedef struct {
+ unsigned char key[32];
+ unsigned char sig[64];
+ unsigned char pubkey[33];
+ size_t pubkeylen;
+} benchmark_schnorr_sig_t;
+
+typedef struct {
+ secp256k1_context *ctx;
+ unsigned char msg[32];
+ benchmark_schnorr_sig_t sigs[64];
+ int numsigs;
+} benchmark_schnorr_verify_t;
+
+static void benchmark_schnorr_init(void* arg) {
+ int i, k;
+ benchmark_schnorr_verify_t* data = (benchmark_schnorr_verify_t*)arg;
+
+ for (i = 0; i < 32; i++) {
+ data->msg[i] = 1 + i;
+ }
+ for (k = 0; k < data->numsigs; k++) {
+ secp256k1_pubkey pubkey;
+ for (i = 0; i < 32; i++) {
+ data->sigs[k].key[i] = 33 + i + k;
+ }
+ secp256k1_schnorr_sign(data->ctx, data->sigs[k].sig, data->msg, data->sigs[k].key, NULL, NULL);
+ data->sigs[k].pubkeylen = 33;
+ CHECK(secp256k1_ec_pubkey_create(data->ctx, &pubkey, data->sigs[k].key));
+ CHECK(secp256k1_ec_pubkey_serialize(data->ctx, data->sigs[k].pubkey, &data->sigs[k].pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED));
+ }
+}
+
+static void benchmark_schnorr_verify(void* arg) {
+ int i;
+ benchmark_schnorr_verify_t* data = (benchmark_schnorr_verify_t*)arg;
+
+ for (i = 0; i < 20000 / data->numsigs; i++) {
+ secp256k1_pubkey pubkey;
+ data->sigs[0].sig[(i >> 8) % 64] ^= (i & 0xFF);
+ CHECK(secp256k1_ec_pubkey_parse(data->ctx, &pubkey, data->sigs[0].pubkey, data->sigs[0].pubkeylen));
+ CHECK(secp256k1_schnorr_verify(data->ctx, data->sigs[0].sig, data->msg, &pubkey) == ((i & 0xFF) == 0));
+ data->sigs[0].sig[(i >> 8) % 64] ^= (i & 0xFF);
+ }
+}
+
+
+
+int main(void) {
+ benchmark_schnorr_verify_t data;
+
+ data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
+
+ data.numsigs = 1;
+ run_benchmark("schnorr_verify", benchmark_schnorr_verify, benchmark_schnorr_init, NULL, &data, 10, 20000);
+
+ secp256k1_context_destroy(data.ctx);
+ return 0;
+}
diff --git a/crypto/secp256k1/secp256k1/src/bench_sign.c b/crypto/secp256k1/libsecp256k1/src/bench_sign.c
index c5b6829a8..ed7224d75 100644
--- a/crypto/secp256k1/secp256k1/src/bench_sign.c
+++ b/crypto/secp256k1/libsecp256k1/src/bench_sign.c
@@ -9,6 +9,7 @@
#include "bench.h"
typedef struct {
+ secp256k1_context* ctx;
unsigned char msg[32];
unsigned char key[32];
} bench_sign_t;
@@ -17,32 +18,39 @@ static void bench_sign_setup(void* arg) {
int i;
bench_sign_t *data = (bench_sign_t*)arg;
- for (i = 0; i < 32; i++) data->msg[i] = i + 1;
- for (i = 0; i < 32; i++) data->key[i] = i + 65;
+ for (i = 0; i < 32; i++) {
+ data->msg[i] = i + 1;
+ }
+ for (i = 0; i < 32; i++) {
+ data->key[i] = i + 65;
+ }
}
static void bench_sign(void* arg) {
int i;
bench_sign_t *data = (bench_sign_t*)arg;
- unsigned char sig[64];
+ unsigned char sig[74];
for (i = 0; i < 20000; i++) {
+ size_t siglen = 74;
int j;
- int recid = 0;
- CHECK(secp256k1_ecdsa_sign_compact(data->msg, sig, data->key, NULL, NULL, &recid));
+ secp256k1_ecdsa_signature signature;
+ CHECK(secp256k1_ecdsa_sign(data->ctx, &signature, data->msg, data->key, NULL, NULL));
+ CHECK(secp256k1_ecdsa_signature_serialize_der(data->ctx, sig, &siglen, &signature));
for (j = 0; j < 32; j++) {
- data->msg[j] = sig[j]; /* Move former R to message. */
- data->key[j] = sig[j + 32]; /* Move former S to key. */
+ data->msg[j] = sig[j];
+ data->key[j] = sig[j + 32];
}
}
}
int main(void) {
bench_sign_t data;
- secp256k1_start(SECP256K1_START_SIGN);
+
+ data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
run_benchmark("ecdsa_sign", bench_sign, bench_sign_setup, NULL, &data, 10, 20000);
- secp256k1_stop();
+ secp256k1_context_destroy(data.ctx);
return 0;
}
diff --git a/crypto/secp256k1/secp256k1/src/bench_verify.c b/crypto/secp256k1/libsecp256k1/src/bench_verify.c
index c279305a0..0cafbdc4e 100644
--- a/crypto/secp256k1/secp256k1/src/bench_verify.c
+++ b/crypto/secp256k1/libsecp256k1/src/bench_verify.c
@@ -12,12 +12,13 @@
#include "bench.h"
typedef struct {
+ secp256k1_context *ctx;
unsigned char msg[32];
unsigned char key[32];
unsigned char sig[72];
- int siglen;
+ size_t siglen;
unsigned char pubkey[33];
- int pubkeylen;
+ size_t pubkeylen;
} benchmark_verify_t;
static void benchmark_verify(void* arg) {
@@ -25,10 +26,14 @@ static void benchmark_verify(void* arg) {
benchmark_verify_t* data = (benchmark_verify_t*)arg;
for (i = 0; i < 20000; i++) {
+ secp256k1_pubkey pubkey;
+ secp256k1_ecdsa_signature sig;
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
- CHECK(secp256k1_ecdsa_verify(data->msg, data->sig, data->siglen, data->pubkey, data->pubkeylen) == (i == 0));
+ CHECK(secp256k1_ec_pubkey_parse(data->ctx, &pubkey, data->pubkey, data->pubkeylen) == 1);
+ CHECK(secp256k1_ecdsa_signature_parse_der(data->ctx, &sig, data->sig, data->siglen) == 1);
+ CHECK(secp256k1_ecdsa_verify(data->ctx, &sig, data->msg, &pubkey) == (i == 0));
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
@@ -37,19 +42,26 @@ static void benchmark_verify(void* arg) {
int main(void) {
int i;
+ secp256k1_pubkey pubkey;
+ secp256k1_ecdsa_signature sig;
benchmark_verify_t data;
- secp256k1_start(SECP256K1_START_VERIFY | SECP256K1_START_SIGN);
+ data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
- for (i = 0; i < 32; i++) data.msg[i] = 1 + i;
- for (i = 0; i < 32; i++) data.key[i] = 33 + i;
+ for (i = 0; i < 32; i++) {
+ data.msg[i] = 1 + i;
+ }
+ for (i = 0; i < 32; i++) {
+ data.key[i] = 33 + i;
+ }
data.siglen = 72;
- secp256k1_ecdsa_sign(data.msg, data.sig, &data.siglen, data.key, NULL, NULL);
- data.pubkeylen = 33;
- CHECK(secp256k1_ec_pubkey_create(data.pubkey, &data.pubkeylen, data.key, 1));
+ CHECK(secp256k1_ecdsa_sign(data.ctx, &sig, data.msg, data.key, NULL, NULL));
+ CHECK(secp256k1_ecdsa_signature_serialize_der(data.ctx, data.sig, &data.siglen, &sig));
+ CHECK(secp256k1_ec_pubkey_create(data.ctx, &pubkey, data.key));
+ CHECK(secp256k1_ec_pubkey_serialize(data.ctx, data.pubkey, &data.pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
run_benchmark("ecdsa_verify", benchmark_verify, NULL, NULL, &data, 10, 20000);
- secp256k1_stop();
+ secp256k1_context_destroy(data.ctx);
return 0;
}
diff --git a/crypto/secp256k1/libsecp256k1/src/ecdsa.h b/crypto/secp256k1/libsecp256k1/src/ecdsa.h
new file mode 100644
index 000000000..4c0a4a89e
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/ecdsa.h
@@ -0,0 +1,22 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_ECDSA_
+#define _SECP256K1_ECDSA_
+
+#include <stddef.h>
+
+#include "scalar.h"
+#include "group.h"
+#include "ecmult.h"
+
+static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *r, secp256k1_scalar *s, const unsigned char *sig, size_t size);
+static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar *r, const secp256k1_scalar *s);
+static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar* r, const secp256k1_scalar* s, const secp256k1_ge *pubkey, const secp256k1_scalar *message);
+static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid);
+static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context *ctx, const secp256k1_scalar* r, const secp256k1_scalar* s, secp256k1_ge *pubkey, const secp256k1_scalar *message, int recid);
+
+#endif
diff --git a/crypto/secp256k1/secp256k1/src/ecdsa_impl.h b/crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h
index 17514047b..4a172b3c5 100644
--- a/crypto/secp256k1/secp256k1/src/ecdsa_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h
@@ -28,7 +28,7 @@
* sage: '%x' % (EllipticCurve ([F (a), F (b)]).order())
* 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141'
*/
-static const secp256k1_fe_t secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
+static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL
);
@@ -42,16 +42,16 @@ static const secp256k1_fe_t secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CON
* sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order())
* '14551231950b75fc4402da1722fc9baee'
*/
-static const secp256k1_fe_t secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
+static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
);
-static int secp256k1_ecdsa_sig_parse(secp256k1_ecdsa_sig_t *r, const unsigned char *sig, int size) {
+static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) {
unsigned char ra[32] = {0}, sa[32] = {0};
const unsigned char *rp;
const unsigned char *sp;
- int lenr;
- int lens;
+ size_t lenr;
+ size_t lens;
int overflow;
if (sig[0] != 0x30) {
return 0;
@@ -98,26 +98,27 @@ static int secp256k1_ecdsa_sig_parse(secp256k1_ecdsa_sig_t *r, const unsigned ch
memcpy(ra + 32 - lenr, rp, lenr);
memcpy(sa + 32 - lens, sp, lens);
overflow = 0;
- secp256k1_scalar_set_b32(&r->r, ra, &overflow);
+ secp256k1_scalar_set_b32(rr, ra, &overflow);
if (overflow) {
return 0;
}
- secp256k1_scalar_set_b32(&r->s, sa, &overflow);
+ secp256k1_scalar_set_b32(rs, sa, &overflow);
if (overflow) {
return 0;
}
return 1;
}
-static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, int *size, const secp256k1_ecdsa_sig_t *a) {
+static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar* ar, const secp256k1_scalar* as) {
unsigned char r[33] = {0}, s[33] = {0};
unsigned char *rp = r, *sp = s;
- int lenR = 33, lenS = 33;
- secp256k1_scalar_get_b32(&r[1], &a->r);
- secp256k1_scalar_get_b32(&s[1], &a->s);
+ size_t lenR = 33, lenS = 33;
+ secp256k1_scalar_get_b32(&r[1], ar);
+ secp256k1_scalar_get_b32(&s[1], as);
while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; }
while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; }
if (*size < 6+lenS+lenR) {
+ *size = 6 + lenS + lenR;
return 0;
}
*size = 6 + lenS + lenR;
@@ -132,26 +133,26 @@ static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, int *size, const se
return 1;
}
-static int secp256k1_ecdsa_sig_verify(const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message) {
+static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) {
unsigned char c[32];
- secp256k1_scalar_t sn, u1, u2;
- secp256k1_fe_t xr;
- secp256k1_gej_t pubkeyj;
- secp256k1_gej_t pr;
+ secp256k1_scalar sn, u1, u2;
+ secp256k1_fe xr;
+ secp256k1_gej pubkeyj;
+ secp256k1_gej pr;
- if (secp256k1_scalar_is_zero(&sig->r) || secp256k1_scalar_is_zero(&sig->s)) {
+ if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
return 0;
}
- secp256k1_scalar_inverse_var(&sn, &sig->s);
+ secp256k1_scalar_inverse_var(&sn, sigs);
secp256k1_scalar_mul(&u1, &sn, message);
- secp256k1_scalar_mul(&u2, &sn, &sig->r);
+ secp256k1_scalar_mul(&u2, &sn, sigr);
secp256k1_gej_set_ge(&pubkeyj, pubkey);
- secp256k1_ecmult(&pr, &pubkeyj, &u2, &u1);
+ secp256k1_ecmult(ctx, &pr, &pubkeyj, &u2, &u1);
if (secp256k1_gej_is_infinity(&pr)) {
return 0;
}
- secp256k1_scalar_get_b32(c, &sig->r);
+ secp256k1_scalar_get_b32(c, sigr);
secp256k1_fe_set_b32(&xr, c);
/** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
@@ -186,19 +187,19 @@ static int secp256k1_ecdsa_sig_verify(const secp256k1_ecdsa_sig_t *sig, const se
return 0;
}
-static int secp256k1_ecdsa_sig_recover(const secp256k1_ecdsa_sig_t *sig, secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message, int recid) {
+static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar* sigs, secp256k1_ge *pubkey, const secp256k1_scalar *message, int recid) {
unsigned char brx[32];
- secp256k1_fe_t fx;
- secp256k1_ge_t x;
- secp256k1_gej_t xj;
- secp256k1_scalar_t rn, u1, u2;
- secp256k1_gej_t qj;
+ secp256k1_fe fx;
+ secp256k1_ge x;
+ secp256k1_gej xj;
+ secp256k1_scalar rn, u1, u2;
+ secp256k1_gej qj;
- if (secp256k1_scalar_is_zero(&sig->r) || secp256k1_scalar_is_zero(&sig->s)) {
+ if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
return 0;
}
- secp256k1_scalar_get_b32(brx, &sig->r);
+ secp256k1_scalar_get_b32(brx, sigr);
VERIFY_CHECK(secp256k1_fe_set_b32(&fx, brx)); /* brx comes from a scalar, so is less than the order; certainly less than p */
if (recid & 2) {
if (secp256k1_fe_cmp_var(&fx, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
@@ -210,29 +211,29 @@ static int secp256k1_ecdsa_sig_recover(const secp256k1_ecdsa_sig_t *sig, secp256
return 0;
}
secp256k1_gej_set_ge(&xj, &x);
- secp256k1_scalar_inverse_var(&rn, &sig->r);
+ secp256k1_scalar_inverse_var(&rn, sigr);
secp256k1_scalar_mul(&u1, &rn, message);
secp256k1_scalar_negate(&u1, &u1);
- secp256k1_scalar_mul(&u2, &rn, &sig->s);
- secp256k1_ecmult(&qj, &xj, &u2, &u1);
+ secp256k1_scalar_mul(&u2, &rn, sigs);
+ secp256k1_ecmult(ctx, &qj, &xj, &u2, &u1);
secp256k1_ge_set_gej_var(pubkey, &qj);
return !secp256k1_gej_is_infinity(&qj);
}
-static int secp256k1_ecdsa_sig_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_scalar_t *seckey, const secp256k1_scalar_t *message, const secp256k1_scalar_t *nonce, int *recid) {
+static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) {
unsigned char b[32];
- secp256k1_gej_t rp;
- secp256k1_ge_t r;
- secp256k1_scalar_t n;
+ secp256k1_gej rp;
+ secp256k1_ge r;
+ secp256k1_scalar n;
int overflow = 0;
- secp256k1_ecmult_gen(&rp, nonce);
+ secp256k1_ecmult_gen(ctx, &rp, nonce);
secp256k1_ge_set_gej(&r, &rp);
secp256k1_fe_normalize(&r.x);
secp256k1_fe_normalize(&r.y);
secp256k1_fe_get_b32(b, &r.x);
- secp256k1_scalar_set_b32(&sig->r, b, &overflow);
- if (secp256k1_scalar_is_zero(&sig->r)) {
+ secp256k1_scalar_set_b32(sigr, b, &overflow);
+ if (secp256k1_scalar_is_zero(sigr)) {
/* P.x = order is on the curve, so technically sig->r could end up zero, which would be an invalid signature. */
secp256k1_gej_clear(&rp);
secp256k1_ge_clear(&r);
@@ -241,18 +242,18 @@ static int secp256k1_ecdsa_sig_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_
if (recid) {
*recid = (overflow ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0);
}
- secp256k1_scalar_mul(&n, &sig->r, seckey);
+ secp256k1_scalar_mul(&n, sigr, seckey);
secp256k1_scalar_add(&n, &n, message);
- secp256k1_scalar_inverse(&sig->s, nonce);
- secp256k1_scalar_mul(&sig->s, &sig->s, &n);
+ secp256k1_scalar_inverse(sigs, nonce);
+ secp256k1_scalar_mul(sigs, sigs, &n);
secp256k1_scalar_clear(&n);
secp256k1_gej_clear(&rp);
secp256k1_ge_clear(&r);
- if (secp256k1_scalar_is_zero(&sig->s)) {
+ if (secp256k1_scalar_is_zero(sigs)) {
return 0;
}
- if (secp256k1_scalar_is_high(&sig->s)) {
- secp256k1_scalar_negate(&sig->s, &sig->s);
+ if (secp256k1_scalar_is_high(sigs)) {
+ secp256k1_scalar_negate(sigs, sigs);
if (recid) {
*recid ^= 1;
}
diff --git a/crypto/secp256k1/libsecp256k1/src/eckey.h b/crypto/secp256k1/libsecp256k1/src/eckey.h
new file mode 100644
index 000000000..71c4096df
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/eckey.h
@@ -0,0 +1,28 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_ECKEY_
+#define _SECP256K1_ECKEY_
+
+#include <stddef.h>
+
+#include "group.h"
+#include "scalar.h"
+#include "ecmult.h"
+#include "ecmult_gen.h"
+
+static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size);
+static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, unsigned int flags);
+
+static int secp256k1_eckey_privkey_parse(secp256k1_scalar *key, const unsigned char *privkey, size_t privkeylen);
+static int secp256k1_eckey_privkey_serialize(const secp256k1_ecmult_gen_context *ctx, unsigned char *privkey, size_t *privkeylen, const secp256k1_scalar *key, unsigned int flags);
+
+static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak);
+static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak);
+static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak);
+static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak);
+
+#endif
diff --git a/crypto/secp256k1/secp256k1/src/eckey_impl.h b/crypto/secp256k1/libsecp256k1/src/eckey_impl.h
index 4382ff5f3..ae4424015 100644
--- a/crypto/secp256k1/secp256k1/src/eckey_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/eckey_impl.h
@@ -14,12 +14,12 @@
#include "group.h"
#include "ecmult_gen.h"
-static int secp256k1_eckey_pubkey_parse(secp256k1_ge_t *elem, const unsigned char *pub, int size) {
+static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size) {
if (size == 33 && (pub[0] == 0x02 || pub[0] == 0x03)) {
- secp256k1_fe_t x;
+ secp256k1_fe x;
return secp256k1_fe_set_b32(&x, pub+1) && secp256k1_ge_set_xo_var(elem, &x, pub[0] == 0x03);
} else if (size == 65 && (pub[0] == 0x04 || pub[0] == 0x06 || pub[0] == 0x07)) {
- secp256k1_fe_t x, y;
+ secp256k1_fe x, y;
if (!secp256k1_fe_set_b32(&x, pub+1) || !secp256k1_fe_set_b32(&y, pub+33)) {
return 0;
}
@@ -33,14 +33,14 @@ static int secp256k1_eckey_pubkey_parse(secp256k1_ge_t *elem, const unsigned cha
}
}
-static int secp256k1_eckey_pubkey_serialize(secp256k1_ge_t *elem, unsigned char *pub, int *size, int compressed) {
+static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, unsigned int flags) {
if (secp256k1_ge_is_infinity(elem)) {
return 0;
}
secp256k1_fe_normalize_var(&elem->x);
secp256k1_fe_normalize_var(&elem->y);
secp256k1_fe_get_b32(&pub[1], &elem->x);
- if (compressed) {
+ if (flags & SECP256K1_EC_COMPRESSED) {
*size = 33;
pub[0] = 0x02 | (secp256k1_fe_is_odd(&elem->y) ? 0x01 : 0x00);
} else {
@@ -51,7 +51,7 @@ static int secp256k1_eckey_pubkey_serialize(secp256k1_ge_t *elem, unsigned char
return 1;
}
-static int secp256k1_eckey_privkey_parse(secp256k1_scalar_t *key, const unsigned char *privkey, int privkeylen) {
+static int secp256k1_eckey_privkey_parse(secp256k1_scalar *key, const unsigned char *privkey, size_t privkeylen) {
unsigned char c[32] = {0};
const unsigned char *end = privkey + privkeylen;
int lenb = 0;
@@ -94,13 +94,13 @@ static int secp256k1_eckey_privkey_parse(secp256k1_scalar_t *key, const unsigned
return !overflow;
}
-static int secp256k1_eckey_privkey_serialize(unsigned char *privkey, int *privkeylen, const secp256k1_scalar_t *key, int compressed) {
- secp256k1_gej_t rp;
- secp256k1_ge_t r;
- int pubkeylen = 0;
- secp256k1_ecmult_gen(&rp, key);
+static int secp256k1_eckey_privkey_serialize(const secp256k1_ecmult_gen_context *ctx, unsigned char *privkey, size_t *privkeylen, const secp256k1_scalar *key, unsigned int flags) {
+ secp256k1_gej rp;
+ secp256k1_ge r;
+ size_t pubkeylen = 0;
+ secp256k1_ecmult_gen(ctx, &rp, key);
secp256k1_ge_set_gej(&r, &rp);
- if (compressed) {
+ if (flags & SECP256K1_EC_COMPRESSED) {
static const unsigned char begin[] = {
0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
};
@@ -154,7 +154,7 @@ static int secp256k1_eckey_privkey_serialize(unsigned char *privkey, int *privke
return 1;
}
-static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar_t *key, const secp256k1_scalar_t *tweak) {
+static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak) {
secp256k1_scalar_add(key, key, tweak);
if (secp256k1_scalar_is_zero(key)) {
return 0;
@@ -162,12 +162,12 @@ static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar_t *key, const secp
return 1;
}
-static int secp256k1_eckey_pubkey_tweak_add(secp256k1_ge_t *key, const secp256k1_scalar_t *tweak) {
- secp256k1_gej_t pt;
- secp256k1_scalar_t one;
+static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak) {
+ secp256k1_gej pt;
+ secp256k1_scalar one;
secp256k1_gej_set_ge(&pt, key);
secp256k1_scalar_set_int(&one, 1);
- secp256k1_ecmult(&pt, &pt, &one, tweak);
+ secp256k1_ecmult(ctx, &pt, &pt, &one, tweak);
if (secp256k1_gej_is_infinity(&pt)) {
return 0;
@@ -176,7 +176,7 @@ static int secp256k1_eckey_pubkey_tweak_add(secp256k1_ge_t *key, const secp256k1
return 1;
}
-static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar_t *key, const secp256k1_scalar_t *tweak) {
+static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak) {
if (secp256k1_scalar_is_zero(tweak)) {
return 0;
}
@@ -185,16 +185,16 @@ static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar_t *key, const secp
return 1;
}
-static int secp256k1_eckey_pubkey_tweak_mul(secp256k1_ge_t *key, const secp256k1_scalar_t *tweak) {
- secp256k1_scalar_t zero;
- secp256k1_gej_t pt;
+static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak) {
+ secp256k1_scalar zero;
+ secp256k1_gej pt;
if (secp256k1_scalar_is_zero(tweak)) {
return 0;
}
secp256k1_scalar_set_int(&zero, 0);
secp256k1_gej_set_ge(&pt, key);
- secp256k1_ecmult(&pt, &pt, tweak, &zero);
+ secp256k1_ecmult(ctx, &pt, &pt, tweak, &zero);
secp256k1_ge_set_gej(key, &pt);
return 1;
}
diff --git a/crypto/secp256k1/libsecp256k1/src/ecmult.h b/crypto/secp256k1/libsecp256k1/src/ecmult.h
new file mode 100644
index 000000000..20484134f
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/ecmult.h
@@ -0,0 +1,31 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_ECMULT_
+#define _SECP256K1_ECMULT_
+
+#include "num.h"
+#include "group.h"
+
+typedef struct {
+ /* For accelerating the computation of a*P + b*G: */
+ secp256k1_ge_storage (*pre_g)[]; /* odd multiples of the generator */
+#ifdef USE_ENDOMORPHISM
+ secp256k1_ge_storage (*pre_g_128)[]; /* odd multiples of 2^128*generator */
+#endif
+} secp256k1_ecmult_context;
+
+static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx);
+static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb);
+static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst,
+ const secp256k1_ecmult_context *src, const secp256k1_callback *cb);
+static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx);
+static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx);
+
+/** Double multiply: R = na*A + ng*G */
+static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng);
+
+#endif
diff --git a/crypto/secp256k1/secp256k1/src/ecmult_gen.h b/crypto/secp256k1/libsecp256k1/src/ecmult_const.h
index 42f822f9c..2b0097655 100644
--- a/crypto/secp256k1/secp256k1/src/ecmult_gen.h
+++ b/crypto/secp256k1/libsecp256k1/src/ecmult_const.h
@@ -1,19 +1,15 @@
/**********************************************************************
- * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Copyright (c) 2015 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
-#ifndef _SECP256K1_ECMULT_GEN_
-#define _SECP256K1_ECMULT_GEN_
+#ifndef _SECP256K1_ECMULT_CONST_
+#define _SECP256K1_ECMULT_CONST_
#include "scalar.h"
#include "group.h"
-static void secp256k1_ecmult_gen_start(void);
-static void secp256k1_ecmult_gen_stop(void);
-
-/** Multiply with the generator: R = a*G */
-static void secp256k1_ecmult_gen(secp256k1_gej_t *r, const secp256k1_scalar_t *a);
+static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q);
#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/ecmult_const_impl.h b/crypto/secp256k1/libsecp256k1/src/ecmult_const_impl.h
new file mode 100644
index 000000000..90ac94770
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/ecmult_const_impl.h
@@ -0,0 +1,260 @@
+/**********************************************************************
+ * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_ECMULT_CONST_IMPL_
+#define _SECP256K1_ECMULT_CONST_IMPL_
+
+#include "scalar.h"
+#include "group.h"
+#include "ecmult_const.h"
+#include "ecmult_impl.h"
+
+#ifdef USE_ENDOMORPHISM
+ #define WNAF_BITS 128
+#else
+ #define WNAF_BITS 256
+#endif
+#define WNAF_SIZE(w) ((WNAF_BITS + (w) - 1) / (w))
+
+/* This is like `ECMULT_TABLE_GET_GE` but is constant time */
+#define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \
+ int m; \
+ int abs_n = (n) * (((n) > 0) * 2 - 1); \
+ int idx_n = abs_n / 2; \
+ secp256k1_fe neg_y; \
+ VERIFY_CHECK(((n) & 1) == 1); \
+ VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
+ VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
+ VERIFY_SETUP(secp256k1_fe_clear(&(r)->x)); \
+ VERIFY_SETUP(secp256k1_fe_clear(&(r)->y)); \
+ for (m = 0; m < ECMULT_TABLE_SIZE(w); m++) { \
+ /* This loop is used to avoid secret data in array indices. See
+ * the comment in ecmult_gen_impl.h for rationale. */ \
+ secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == idx_n); \
+ secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == idx_n); \
+ } \
+ (r)->infinity = 0; \
+ secp256k1_fe_negate(&neg_y, &(r)->y, 1); \
+ secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \
+} while(0)
+
+
+/** Convert a number to WNAF notation. The number becomes represented by sum(2^{wi} * wnaf[i], i=0..return_val)
+ * with the following guarantees:
+ * - each wnaf[i] an odd integer between -(1 << w) and (1 << w)
+ * - each wnaf[i] is nonzero
+ * - the number of words set is returned; this is always (WNAF_BITS + w - 1) / w
+ *
+ * Adapted from `The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar
+ * Multiplications Secure against Side Channel Attacks`, Okeya and Tagaki. M. Joye (Ed.)
+ * CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlagy Berlin Heidelberg 2003
+ *
+ * Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335
+ */
+static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) {
+ int global_sign;
+ int skew = 0;
+ int word = 0;
+ /* 1 2 3 */
+ int u_last;
+ int u;
+
+#ifdef USE_ENDOMORPHISM
+ int flip;
+ int bit;
+ secp256k1_scalar neg_s;
+ int not_neg_one;
+ /* If we are using the endomorphism, we cannot handle even numbers by negating
+ * them, since we are working with 128-bit numbers whose negations would be 256
+ * bits, eliminating the performance advantage. Instead we use a technique from
+ * Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even)
+ * or 2 (for odd) to the number we are encoding, then compensating after the
+ * multiplication. */
+ /* Negative 128-bit numbers will be negated, since otherwise they are 256-bit */
+ flip = secp256k1_scalar_is_high(&s);
+ /* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */
+ bit = flip ^ (s.d[0] & 1);
+ /* We check for negative one, since adding 2 to it will cause an overflow */
+ secp256k1_scalar_negate(&neg_s, &s);
+ not_neg_one = !secp256k1_scalar_is_one(&neg_s);
+ secp256k1_scalar_cadd_bit(&s, bit, not_neg_one);
+ /* If we had negative one, flip == 1, s.d[0] == 0, bit == 1, so caller expects
+ * that we added two to it and flipped it. In fact for -1 these operations are
+ * identical. We only flipped, but since skewing is required (in the sense that
+ * the skew must be 1 or 2, never zero) and flipping is not, we need to change
+ * our flags to claim that we only skewed. */
+ global_sign = secp256k1_scalar_cond_negate(&s, flip);
+ global_sign *= not_neg_one * 2 - 1;
+ skew = 1 << bit;
+#else
+ /* Otherwise, we just negate to force oddness */
+ int is_even = secp256k1_scalar_is_even(&s);
+ global_sign = secp256k1_scalar_cond_negate(&s, is_even);
+#endif
+
+ /* 4 */
+ u_last = secp256k1_scalar_shr_int(&s, w);
+ while (word * w < WNAF_BITS) {
+ int sign;
+ int even;
+
+ /* 4.1 4.4 */
+ u = secp256k1_scalar_shr_int(&s, w);
+ /* 4.2 */
+ even = ((u & 1) == 0);
+ sign = 2 * (u_last > 0) - 1;
+ u += sign * even;
+ u_last -= sign * even * (1 << w);
+
+ /* 4.3, adapted for global sign change */
+ wnaf[word++] = u_last * global_sign;
+
+ u_last = u;
+ }
+ wnaf[word] = u * global_sign;
+
+ VERIFY_CHECK(secp256k1_scalar_is_zero(&s));
+ VERIFY_CHECK(word == WNAF_SIZE(w));
+ return skew;
+}
+
+
+static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar) {
+ secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
+ secp256k1_ge tmpa;
+ secp256k1_fe Z;
+
+#ifdef USE_ENDOMORPHISM
+ secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
+ int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)];
+ int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)];
+ int skew_1;
+ int skew_lam;
+ secp256k1_scalar q_1, q_lam;
+#else
+ int wnaf[1 + WNAF_SIZE(WINDOW_A - 1)];
+#endif
+
+ int i;
+ secp256k1_scalar sc = *scalar;
+
+ /* build wnaf representation for q. */
+#ifdef USE_ENDOMORPHISM
+ /* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */
+ secp256k1_scalar_split_lambda(&q_1, &q_lam, &sc);
+ /* no need for zero correction when using endomorphism since even
+ * numbers have one added to them anyway */
+ skew_1 = secp256k1_wnaf_const(wnaf_1, q_1, WINDOW_A - 1);
+ skew_lam = secp256k1_wnaf_const(wnaf_lam, q_lam, WINDOW_A - 1);
+#else
+ int is_zero = secp256k1_scalar_is_zero(scalar);
+ /* the wNAF ladder cannot handle zero, so bump this to one .. we will
+ * correct the result after the fact */
+ sc.d[0] += is_zero;
+ VERIFY_CHECK(!secp256k1_scalar_is_zero(&sc));
+
+ secp256k1_wnaf_const(wnaf, sc, WINDOW_A - 1);
+#endif
+
+ /* Calculate odd multiples of a.
+ * All multiples are brought to the same Z 'denominator', which is stored
+ * in Z. Due to secp256k1' isomorphism we can do all operations pretending
+ * that the Z coordinate was 1, use affine addition formulae, and correct
+ * the Z coordinate of the result once at the end.
+ */
+ secp256k1_gej_set_ge(r, a);
+ secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r);
+ for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
+ secp256k1_fe_normalize_weak(&pre_a[i].y);
+ }
+#ifdef USE_ENDOMORPHISM
+ for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
+ secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
+ }
+#endif
+
+ /* first loop iteration (separated out so we can directly set r, rather
+ * than having it start at infinity, get doubled several times, then have
+ * its new value added to it) */
+#ifdef USE_ENDOMORPHISM
+ i = wnaf_1[WNAF_SIZE(WINDOW_A - 1)];
+ VERIFY_CHECK(i != 0);
+ ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
+ secp256k1_gej_set_ge(r, &tmpa);
+
+ i = wnaf_lam[WNAF_SIZE(WINDOW_A - 1)];
+ VERIFY_CHECK(i != 0);
+ ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A);
+ secp256k1_gej_add_ge(r, r, &tmpa);
+#else
+ i = wnaf[WNAF_SIZE(WINDOW_A - 1)];
+ VERIFY_CHECK(i != 0);
+ ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
+ secp256k1_gej_set_ge(r, &tmpa);
+#endif
+ /* remaining loop iterations */
+ for (i = WNAF_SIZE(WINDOW_A - 1) - 1; i >= 0; i--) {
+ int n;
+ int j;
+ for (j = 0; j < WINDOW_A - 1; ++j) {
+ secp256k1_gej_double_nonzero(r, r, NULL);
+ }
+#ifdef USE_ENDOMORPHISM
+ n = wnaf_1[i];
+ ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
+ VERIFY_CHECK(n != 0);
+ secp256k1_gej_add_ge(r, r, &tmpa);
+
+ n = wnaf_lam[i];
+ ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
+ VERIFY_CHECK(n != 0);
+ secp256k1_gej_add_ge(r, r, &tmpa);
+#else
+ n = wnaf[i];
+ VERIFY_CHECK(n != 0);
+ ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
+ secp256k1_gej_add_ge(r, r, &tmpa);
+#endif
+ }
+
+ secp256k1_fe_mul(&r->z, &r->z, &Z);
+
+#ifdef USE_ENDOMORPHISM
+ {
+ /* Correct for wNAF skew */
+ secp256k1_ge correction = *a;
+ secp256k1_ge_storage correction_1_stor;
+ secp256k1_ge_storage correction_lam_stor;
+ secp256k1_ge_storage a2_stor;
+ secp256k1_gej tmpj;
+ secp256k1_gej_set_ge(&tmpj, &correction);
+ secp256k1_gej_double_var(&tmpj, &tmpj, NULL);
+ secp256k1_ge_set_gej(&correction, &tmpj);
+ secp256k1_ge_to_storage(&correction_1_stor, a);
+ secp256k1_ge_to_storage(&correction_lam_stor, a);
+ secp256k1_ge_to_storage(&a2_stor, &correction);
+
+ /* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */
+ secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2);
+ secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2);
+
+ /* Apply the correction */
+ secp256k1_ge_from_storage(&correction, &correction_1_stor);
+ secp256k1_ge_neg(&correction, &correction);
+ secp256k1_gej_add_ge(r, r, &correction);
+
+ secp256k1_ge_from_storage(&correction, &correction_lam_stor);
+ secp256k1_ge_neg(&correction, &correction);
+ secp256k1_ge_mul_lambda(&correction, &correction);
+ secp256k1_gej_add_ge(r, r, &correction);
+ }
+#else
+ /* correct for zero */
+ r->infinity |= is_zero;
+#endif
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/ecmult_gen.h b/crypto/secp256k1/libsecp256k1/src/ecmult_gen.h
new file mode 100644
index 000000000..eb2cc9ead
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/ecmult_gen.h
@@ -0,0 +1,43 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_ECMULT_GEN_
+#define _SECP256K1_ECMULT_GEN_
+
+#include "scalar.h"
+#include "group.h"
+
+typedef struct {
+ /* For accelerating the computation of a*G:
+ * To harden against timing attacks, use the following mechanism:
+ * * Break up the multiplicand into groups of 4 bits, called n_0, n_1, n_2, ..., n_63.
+ * * Compute sum(n_i * 16^i * G + U_i, i=0..63), where:
+ * * U_i = U * 2^i (for i=0..62)
+ * * U_i = U * (1-2^63) (for i=63)
+ * where U is a point with no known corresponding scalar. Note that sum(U_i, i=0..63) = 0.
+ * For each i, and each of the 16 possible values of n_i, (n_i * 16^i * G + U_i) is
+ * precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0..63).
+ * None of the resulting prec group elements have a known scalar, and neither do any of
+ * the intermediate sums while computing a*G.
+ */
+ secp256k1_ge_storage (*prec)[64][16]; /* prec[j][i] = 16^j * i * G + U_i */
+ secp256k1_scalar blind;
+ secp256k1_gej initial;
+} secp256k1_ecmult_gen_context;
+
+static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context* ctx);
+static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context* ctx, const secp256k1_callback* cb);
+static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst,
+ const secp256k1_ecmult_gen_context* src, const secp256k1_callback* cb);
+static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context* ctx);
+static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx);
+
+/** Multiply with the generator: R = a*G */
+static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context* ctx, secp256k1_gej *r, const secp256k1_scalar *a);
+
+static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32);
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h b/crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h
new file mode 100644
index 000000000..2ee27377f
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h
@@ -0,0 +1,205 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_ECMULT_GEN_IMPL_H_
+#define _SECP256K1_ECMULT_GEN_IMPL_H_
+
+#include "scalar.h"
+#include "group.h"
+#include "ecmult_gen.h"
+#include "hash_impl.h"
+#ifdef USE_ECMULT_STATIC_PRECOMPUTATION
+#include "ecmult_static_context.h"
+#endif
+static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context *ctx) {
+ ctx->prec = NULL;
+}
+
+static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx, const secp256k1_callback* cb) {
+#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
+ secp256k1_ge prec[1024];
+ secp256k1_gej gj;
+ secp256k1_gej nums_gej;
+ int i, j;
+#endif
+
+ if (ctx->prec != NULL) {
+ return;
+ }
+#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
+ ctx->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*ctx->prec));
+
+ /* get the generator */
+ secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
+
+ /* Construct a group element with no known corresponding scalar (nothing up my sleeve). */
+ {
+ static const unsigned char nums_b32[33] = "The scalar for this x is unknown";
+ secp256k1_fe nums_x;
+ secp256k1_ge nums_ge;
+ VERIFY_CHECK(secp256k1_fe_set_b32(&nums_x, nums_b32));
+ VERIFY_CHECK(secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0));
+ secp256k1_gej_set_ge(&nums_gej, &nums_ge);
+ /* Add G to make the bits in x uniformly distributed. */
+ secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g, NULL);
+ }
+
+ /* compute prec. */
+ {
+ secp256k1_gej precj[1024]; /* Jacobian versions of prec. */
+ secp256k1_gej gbase;
+ secp256k1_gej numsbase;
+ gbase = gj; /* 16^j * G */
+ numsbase = nums_gej; /* 2^j * nums. */
+ for (j = 0; j < 64; j++) {
+ /* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */
+ precj[j*16] = numsbase;
+ for (i = 1; i < 16; i++) {
+ secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase, NULL);
+ }
+ /* Multiply gbase by 16. */
+ for (i = 0; i < 4; i++) {
+ secp256k1_gej_double_var(&gbase, &gbase, NULL);
+ }
+ /* Multiply numbase by 2. */
+ secp256k1_gej_double_var(&numsbase, &numsbase, NULL);
+ if (j == 62) {
+ /* In the last iteration, numsbase is (1 - 2^j) * nums instead. */
+ secp256k1_gej_neg(&numsbase, &numsbase);
+ secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL);
+ }
+ }
+ secp256k1_ge_set_all_gej_var(1024, prec, precj, cb);
+ }
+ for (j = 0; j < 64; j++) {
+ for (i = 0; i < 16; i++) {
+ secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*16 + i]);
+ }
+ }
+#else
+ (void)cb;
+ ctx->prec = (secp256k1_ge_storage (*)[64][16])secp256k1_ecmult_static_context;
+#endif
+ secp256k1_ecmult_gen_blind(ctx, NULL);
+}
+
+static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) {
+ return ctx->prec != NULL;
+}
+
+static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst,
+ const secp256k1_ecmult_gen_context *src, const secp256k1_callback* cb) {
+ if (src->prec == NULL) {
+ dst->prec = NULL;
+ } else {
+#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
+ dst->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*dst->prec));
+ memcpy(dst->prec, src->prec, sizeof(*dst->prec));
+#else
+ (void)cb;
+ dst->prec = src->prec;
+#endif
+ dst->initial = src->initial;
+ dst->blind = src->blind;
+ }
+}
+
+static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) {
+#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
+ free(ctx->prec);
+#endif
+ secp256k1_scalar_clear(&ctx->blind);
+ secp256k1_gej_clear(&ctx->initial);
+ ctx->prec = NULL;
+}
+
+static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) {
+ secp256k1_ge add;
+ secp256k1_ge_storage adds;
+ secp256k1_scalar gnb;
+ int bits;
+ int i, j;
+ memset(&adds, 0, sizeof(adds));
+ *r = ctx->initial;
+ /* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */
+ secp256k1_scalar_add(&gnb, gn, &ctx->blind);
+ add.infinity = 0;
+ for (j = 0; j < 64; j++) {
+ bits = secp256k1_scalar_get_bits(&gnb, j * 4, 4);
+ for (i = 0; i < 16; i++) {
+ /** This uses a conditional move to avoid any secret data in array indexes.
+ * _Any_ use of secret indexes has been demonstrated to result in timing
+ * sidechannels, even when the cache-line access patterns are uniform.
+ * See also:
+ * "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe
+ * (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and
+ * "Cache Attacks and Countermeasures: the Case of AES", RSA 2006,
+ * by Dag Arne Osvik, Adi Shamir, and Eran Tromer
+ * (http://www.tau.ac.il/~tromer/papers/cache.pdf)
+ */
+ secp256k1_ge_storage_cmov(&adds, &(*ctx->prec)[j][i], i == bits);
+ }
+ secp256k1_ge_from_storage(&add, &adds);
+ secp256k1_gej_add_ge(r, r, &add);
+ }
+ bits = 0;
+ secp256k1_ge_clear(&add);
+ secp256k1_scalar_clear(&gnb);
+}
+
+/* Setup blinding values for secp256k1_ecmult_gen. */
+static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) {
+ secp256k1_scalar b;
+ secp256k1_gej gb;
+ secp256k1_fe s;
+ unsigned char nonce32[32];
+ secp256k1_rfc6979_hmac_sha256_t rng;
+ int retry;
+ unsigned char keydata[64] = {0};
+ if (seed32 == NULL) {
+ /* When seed is NULL, reset the initial point and blinding value. */
+ secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g);
+ secp256k1_gej_neg(&ctx->initial, &ctx->initial);
+ secp256k1_scalar_set_int(&ctx->blind, 1);
+ }
+ /* The prior blinding value (if not reset) is chained forward by including it in the hash. */
+ secp256k1_scalar_get_b32(nonce32, &ctx->blind);
+ /** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data,
+ * and guards against weak or adversarial seeds. This is a simpler and safer interface than
+ * asking the caller for blinding values directly and expecting them to retry on failure.
+ */
+ memcpy(keydata, nonce32, 32);
+ if (seed32 != NULL) {
+ memcpy(keydata + 32, seed32, 32);
+ }
+ secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32);
+ memset(keydata, 0, sizeof(keydata));
+ /* Retry for out of range results to achieve uniformity. */
+ do {
+ secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
+ retry = !secp256k1_fe_set_b32(&s, nonce32);
+ retry |= secp256k1_fe_is_zero(&s);
+ } while (retry);
+ /* Randomize the projection to defend against multiplier sidechannels. */
+ secp256k1_gej_rescale(&ctx->initial, &s);
+ secp256k1_fe_clear(&s);
+ do {
+ secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
+ secp256k1_scalar_set_b32(&b, nonce32, &retry);
+ /* A blinding value of 0 works, but would undermine the projection hardening. */
+ retry |= secp256k1_scalar_is_zero(&b);
+ } while (retry);
+ secp256k1_rfc6979_hmac_sha256_finalize(&rng);
+ memset(nonce32, 0, 32);
+ secp256k1_ecmult_gen(ctx, &gb, &b);
+ secp256k1_scalar_negate(&b, &b);
+ ctx->blind = b;
+ ctx->initial = gb;
+ secp256k1_scalar_clear(&b);
+ secp256k1_gej_clear(&gb);
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/ecmult_impl.h b/crypto/secp256k1/libsecp256k1/src/ecmult_impl.h
new file mode 100644
index 000000000..e6e5f4718
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/ecmult_impl.h
@@ -0,0 +1,389 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_ECMULT_IMPL_H_
+#define _SECP256K1_ECMULT_IMPL_H_
+
+#include "group.h"
+#include "scalar.h"
+#include "ecmult.h"
+
+/* optimal for 128-bit and 256-bit exponents. */
+#define WINDOW_A 5
+
+/** larger numbers may result in slightly better performance, at the cost of
+ exponentially larger precomputed tables. */
+#ifdef USE_ENDOMORPHISM
+/** Two tables for window size 15: 1.375 MiB. */
+#define WINDOW_G 15
+#else
+/** One table for window size 16: 1.375 MiB. */
+#define WINDOW_G 16
+#endif
+
+/** The number of entries a table with precomputed multiples needs to have. */
+#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2))
+
+/** Fill a table 'prej' with precomputed odd multiples of a. Prej will contain
+ * the values [1*a,3*a,...,(2*n-1)*a], so it space for n values. zr[0] will
+ * contain prej[0].z / a.z. The other zr[i] values = prej[i].z / prej[i-1].z.
+ * Prej's Z values are undefined, except for the last value.
+ */
+static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej *prej, secp256k1_fe *zr, const secp256k1_gej *a) {
+ secp256k1_gej d;
+ secp256k1_ge a_ge, d_ge;
+ int i;
+
+ VERIFY_CHECK(!a->infinity);
+
+ secp256k1_gej_double_var(&d, a, NULL);
+
+ /*
+ * Perform the additions on an isomorphism where 'd' is affine: drop the z coordinate
+ * of 'd', and scale the 1P starting value's x/y coordinates without changing its z.
+ */
+ d_ge.x = d.x;
+ d_ge.y = d.y;
+ d_ge.infinity = 0;
+
+ secp256k1_ge_set_gej_zinv(&a_ge, a, &d.z);
+ prej[0].x = a_ge.x;
+ prej[0].y = a_ge.y;
+ prej[0].z = a->z;
+ prej[0].infinity = 0;
+
+ zr[0] = d.z;
+ for (i = 1; i < n; i++) {
+ secp256k1_gej_add_ge_var(&prej[i], &prej[i-1], &d_ge, &zr[i]);
+ }
+
+ /*
+ * Each point in 'prej' has a z coordinate too small by a factor of 'd.z'. Only
+ * the final point's z coordinate is actually used though, so just update that.
+ */
+ secp256k1_fe_mul(&prej[n-1].z, &prej[n-1].z, &d.z);
+}
+
+/** Fill a table 'pre' with precomputed odd multiples of a.
+ *
+ * There are two versions of this function:
+ * - secp256k1_ecmult_odd_multiples_table_globalz_windowa which brings its
+ * resulting point set to a single constant Z denominator, stores the X and Y
+ * coordinates as ge_storage points in pre, and stores the global Z in rz.
+ * It only operates on tables sized for WINDOW_A wnaf multiples.
+ * - secp256k1_ecmult_odd_multiples_table_storage_var, which converts its
+ * resulting point set to actually affine points, and stores those in pre.
+ * It operates on tables of any size, but uses heap-allocated temporaries.
+ *
+ * To compute a*P + b*G, we compute a table for P using the first function,
+ * and for G using the second (which requires an inverse, but it only needs to
+ * happen once).
+ */
+static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) {
+ secp256k1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)];
+ secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)];
+
+ /* Compute the odd multiples in Jacobian form. */
+ secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), prej, zr, a);
+ /* Bring them to the same Z denominator. */
+ secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr);
+}
+
+static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge_storage *pre, const secp256k1_gej *a, const secp256k1_callback *cb) {
+ secp256k1_gej *prej = (secp256k1_gej*)checked_malloc(cb, sizeof(secp256k1_gej) * n);
+ secp256k1_ge *prea = (secp256k1_ge*)checked_malloc(cb, sizeof(secp256k1_ge) * n);
+ secp256k1_fe *zr = (secp256k1_fe*)checked_malloc(cb, sizeof(secp256k1_fe) * n);
+ int i;
+
+ /* Compute the odd multiples in Jacobian form. */
+ secp256k1_ecmult_odd_multiples_table(n, prej, zr, a);
+ /* Convert them in batch to affine coordinates. */
+ secp256k1_ge_set_table_gej_var(n, prea, prej, zr);
+ /* Convert them to compact storage form. */
+ for (i = 0; i < n; i++) {
+ secp256k1_ge_to_storage(&pre[i], &prea[i]);
+ }
+
+ free(prea);
+ free(prej);
+ free(zr);
+}
+
+/** The following two macro retrieves a particular odd multiple from a table
+ * of precomputed multiples. */
+#define ECMULT_TABLE_GET_GE(r,pre,n,w) do { \
+ VERIFY_CHECK(((n) & 1) == 1); \
+ VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
+ VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
+ if ((n) > 0) { \
+ *(r) = (pre)[((n)-1)/2]; \
+ } else { \
+ secp256k1_ge_neg((r), &(pre)[(-(n)-1)/2]); \
+ } \
+} while(0)
+
+#define ECMULT_TABLE_GET_GE_STORAGE(r,pre,n,w) do { \
+ VERIFY_CHECK(((n) & 1) == 1); \
+ VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
+ VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
+ if ((n) > 0) { \
+ secp256k1_ge_from_storage((r), &(pre)[((n)-1)/2]); \
+ } else { \
+ secp256k1_ge_from_storage((r), &(pre)[(-(n)-1)/2]); \
+ secp256k1_ge_neg((r), (r)); \
+ } \
+} while(0)
+
+static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx) {
+ ctx->pre_g = NULL;
+#ifdef USE_ENDOMORPHISM
+ ctx->pre_g_128 = NULL;
+#endif
+}
+
+static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb) {
+ secp256k1_gej gj;
+
+ if (ctx->pre_g != NULL) {
+ return;
+ }
+
+ /* get the generator */
+ secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
+
+ ctx->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
+
+ /* precompute the tables with odd multiples */
+ secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj, cb);
+
+#ifdef USE_ENDOMORPHISM
+ {
+ secp256k1_gej g_128j;
+ int i;
+
+ ctx->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
+
+ /* calculate 2^128*generator */
+ g_128j = gj;
+ for (i = 0; i < 128; i++) {
+ secp256k1_gej_double_var(&g_128j, &g_128j, NULL);
+ }
+ secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j, cb);
+ }
+#endif
+}
+
+static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst,
+ const secp256k1_ecmult_context *src, const secp256k1_callback *cb) {
+ if (src->pre_g == NULL) {
+ dst->pre_g = NULL;
+ } else {
+ size_t size = sizeof((*dst->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G);
+ dst->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, size);
+ memcpy(dst->pre_g, src->pre_g, size);
+ }
+#ifdef USE_ENDOMORPHISM
+ if (src->pre_g_128 == NULL) {
+ dst->pre_g_128 = NULL;
+ } else {
+ size_t size = sizeof((*dst->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G);
+ dst->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, size);
+ memcpy(dst->pre_g_128, src->pre_g_128, size);
+ }
+#endif
+}
+
+static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx) {
+ return ctx->pre_g != NULL;
+}
+
+static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx) {
+ free(ctx->pre_g);
+#ifdef USE_ENDOMORPHISM
+ free(ctx->pre_g_128);
+#endif
+ secp256k1_ecmult_context_init(ctx);
+}
+
+/** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits),
+ * with the following guarantees:
+ * - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1)
+ * - two non-zero entries in wnaf are separated by at least w-1 zeroes.
+ * - the number of set values in wnaf is returned. This number is at most 256, and at most one more
+ * than the number of bits in the (absolute value) of the input.
+ */
+static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) {
+ secp256k1_scalar s = *a;
+ int last_set_bit = -1;
+ int bit = 0;
+ int sign = 1;
+ int carry = 0;
+
+ VERIFY_CHECK(wnaf != NULL);
+ VERIFY_CHECK(0 <= len && len <= 256);
+ VERIFY_CHECK(a != NULL);
+ VERIFY_CHECK(2 <= w && w <= 31);
+
+ memset(wnaf, 0, len * sizeof(wnaf[0]));
+
+ if (secp256k1_scalar_get_bits(&s, 255, 1)) {
+ secp256k1_scalar_negate(&s, &s);
+ sign = -1;
+ }
+
+ while (bit < len) {
+ int now;
+ int word;
+ if (secp256k1_scalar_get_bits(&s, bit, 1) == (unsigned int)carry) {
+ bit++;
+ continue;
+ }
+
+ now = w;
+ if (now > len - bit) {
+ now = len - bit;
+ }
+
+ word = secp256k1_scalar_get_bits_var(&s, bit, now) + carry;
+
+ carry = (word >> (w-1)) & 1;
+ word -= carry << w;
+
+ wnaf[bit] = sign * word;
+ last_set_bit = bit;
+
+ bit += now;
+ }
+#ifdef VERIFY
+ CHECK(carry == 0);
+ while (bit < 256) {
+ CHECK(secp256k1_scalar_get_bits(&s, bit++, 1) == 0);
+ }
+#endif
+ return last_set_bit + 1;
+}
+
+static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
+ secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
+ secp256k1_ge tmpa;
+ secp256k1_fe Z;
+#ifdef USE_ENDOMORPHISM
+ secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
+ secp256k1_scalar na_1, na_lam;
+ /* Splitted G factors. */
+ secp256k1_scalar ng_1, ng_128;
+ int wnaf_na_1[130];
+ int wnaf_na_lam[130];
+ int bits_na_1;
+ int bits_na_lam;
+ int wnaf_ng_1[129];
+ int bits_ng_1;
+ int wnaf_ng_128[129];
+ int bits_ng_128;
+#else
+ int wnaf_na[256];
+ int bits_na;
+ int wnaf_ng[256];
+ int bits_ng;
+#endif
+ int i;
+ int bits;
+
+#ifdef USE_ENDOMORPHISM
+ /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
+ secp256k1_scalar_split_lambda(&na_1, &na_lam, na);
+
+ /* build wnaf representation for na_1 and na_lam. */
+ bits_na_1 = secp256k1_ecmult_wnaf(wnaf_na_1, 130, &na_1, WINDOW_A);
+ bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, 130, &na_lam, WINDOW_A);
+ VERIFY_CHECK(bits_na_1 <= 130);
+ VERIFY_CHECK(bits_na_lam <= 130);
+ bits = bits_na_1;
+ if (bits_na_lam > bits) {
+ bits = bits_na_lam;
+ }
+#else
+ /* build wnaf representation for na. */
+ bits_na = secp256k1_ecmult_wnaf(wnaf_na, 256, na, WINDOW_A);
+ bits = bits_na;
+#endif
+
+ /* Calculate odd multiples of a.
+ * All multiples are brought to the same Z 'denominator', which is stored
+ * in Z. Due to secp256k1' isomorphism we can do all operations pretending
+ * that the Z coordinate was 1, use affine addition formulae, and correct
+ * the Z coordinate of the result once at the end.
+ * The exception is the precomputed G table points, which are actually
+ * affine. Compared to the base used for other points, they have a Z ratio
+ * of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same
+ * isomorphism to efficiently add with a known Z inverse.
+ */
+ secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, a);
+
+#ifdef USE_ENDOMORPHISM
+ for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
+ secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
+ }
+
+ /* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */
+ secp256k1_scalar_split_128(&ng_1, &ng_128, ng);
+
+ /* Build wnaf representation for ng_1 and ng_128 */
+ bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G);
+ bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G);
+ if (bits_ng_1 > bits) {
+ bits = bits_ng_1;
+ }
+ if (bits_ng_128 > bits) {
+ bits = bits_ng_128;
+ }
+#else
+ bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, 256, ng, WINDOW_G);
+ if (bits_ng > bits) {
+ bits = bits_ng;
+ }
+#endif
+
+ secp256k1_gej_set_infinity(r);
+
+ for (i = bits - 1; i >= 0; i--) {
+ int n;
+ secp256k1_gej_double_var(r, r, NULL);
+#ifdef USE_ENDOMORPHISM
+ if (i < bits_na_1 && (n = wnaf_na_1[i])) {
+ ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
+ secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
+ }
+ if (i < bits_na_lam && (n = wnaf_na_lam[i])) {
+ ECMULT_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
+ secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
+ }
+ if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
+ ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
+ secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
+ }
+ if (i < bits_ng_128 && (n = wnaf_ng_128[i])) {
+ ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g_128, n, WINDOW_G);
+ secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
+ }
+#else
+ if (i < bits_na && (n = wnaf_na[i])) {
+ ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
+ secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
+ }
+ if (i < bits_ng && (n = wnaf_ng[i])) {
+ ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
+ secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
+ }
+#endif
+ }
+
+ if (!r->infinity) {
+ secp256k1_fe_mul(&r->z, &r->z, &Z);
+ }
+}
+
+#endif
diff --git a/crypto/secp256k1/secp256k1/src/field.h b/crypto/secp256k1/libsecp256k1/src/field.h
index 9e6d7d3c0..311329b92 100644
--- a/crypto/secp256k1/secp256k1/src/field.h
+++ b/crypto/secp256k1/libsecp256k1/src/field.h
@@ -31,86 +31,89 @@
#endif
/** Normalize a field element. */
-static void secp256k1_fe_normalize(secp256k1_fe_t *r);
+static void secp256k1_fe_normalize(secp256k1_fe *r);
/** Weakly normalize a field element: reduce it magnitude to 1, but don't fully normalize. */
-static void secp256k1_fe_normalize_weak(secp256k1_fe_t *r);
+static void secp256k1_fe_normalize_weak(secp256k1_fe *r);
/** Normalize a field element, without constant-time guarantee. */
-static void secp256k1_fe_normalize_var(secp256k1_fe_t *r);
+static void secp256k1_fe_normalize_var(secp256k1_fe *r);
/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
* implementation may optionally normalize the input, but this should not be relied upon. */
-static int secp256k1_fe_normalizes_to_zero(secp256k1_fe_t *r);
+static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r);
/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
* implementation may optionally normalize the input, but this should not be relied upon. */
-static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r);
+static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r);
/** Set a field element equal to a small integer. Resulting field element is normalized. */
-static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a);
+static void secp256k1_fe_set_int(secp256k1_fe *r, int a);
/** Verify whether a field element is zero. Requires the input to be normalized. */
-static int secp256k1_fe_is_zero(const secp256k1_fe_t *a);
+static int secp256k1_fe_is_zero(const secp256k1_fe *a);
/** Check the "oddness" of a field element. Requires the input to be normalized. */
-static int secp256k1_fe_is_odd(const secp256k1_fe_t *a);
+static int secp256k1_fe_is_odd(const secp256k1_fe *a);
/** Compare two field elements. Requires magnitude-1 inputs. */
-static int secp256k1_fe_equal_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b);
+static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b);
/** Compare two field elements. Requires both inputs to be normalized */
-static int secp256k1_fe_cmp_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b);
+static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b);
-/** Set a field element equal to 32-byte big endian value. If succesful, the resulting field element is normalized. */
-static int secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a);
+/** Set a field element equal to 32-byte big endian value. If successful, the resulting field element is normalized. */
+static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a);
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
-static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a);
+static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a);
/** Set a field element equal to the additive inverse of another. Takes a maximum magnitude of the input
* as an argument. The magnitude of the output is one higher. */
-static void secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m);
+static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m);
/** Multiplies the passed field element with a small integer constant. Multiplies the magnitude by that
* small integer. */
-static void secp256k1_fe_mul_int(secp256k1_fe_t *r, int a);
+static void secp256k1_fe_mul_int(secp256k1_fe *r, int a);
/** Adds a field element to another. The result has the sum of the inputs' magnitudes as magnitude. */
-static void secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a);
+static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a);
/** Sets a field element to be the product of two others. Requires the inputs' magnitudes to be at most 8.
* The output magnitude is 1 (but not guaranteed to be normalized). */
-static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t * SECP256K1_RESTRICT b);
+static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b);
/** Sets a field element to be the square of another. Requires the input's magnitude to be at most 8.
* The output magnitude is 1 (but not guaranteed to be normalized). */
-static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a);
+static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a);
/** Sets a field element to be the (modular) square root (if any exist) of another. Requires the
* input's magnitude to be at most 8. The output magnitude is 1 (but not guaranteed to be
* normalized). Return value indicates whether a square root was found. */
-static int secp256k1_fe_sqrt_var(secp256k1_fe_t *r, const secp256k1_fe_t *a);
+static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a);
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
* at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
-static void secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a);
+static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a);
/** Potentially faster version of secp256k1_fe_inv, without constant-time guarantee. */
-static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a);
+static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a);
/** Calculate the (modular) inverses of a batch of field elements. Requires the inputs' magnitudes to be
* at most 8. The output magnitudes are 1 (but not guaranteed to be normalized). The inputs and
* outputs must not overlap in memory. */
-static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe_t *r, const secp256k1_fe_t *a);
+static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe *r, const secp256k1_fe *a);
/** Convert a field element to the storage type. */
-static void secp256k1_fe_to_storage(secp256k1_fe_storage_t *r, const secp256k1_fe_t*);
+static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a);
/** Convert a field element back from the storage type. */
-static void secp256k1_fe_from_storage(secp256k1_fe_t *r, const secp256k1_fe_storage_t*);
+static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
-static void secp256k1_fe_storage_cmov(secp256k1_fe_storage_t *r, const secp256k1_fe_storage_t *a, int flag);
+static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag);
+
+/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
+static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag);
#endif
diff --git a/crypto/secp256k1/secp256k1/src/field_10x26.h b/crypto/secp256k1/libsecp256k1/src/field_10x26.h
index 44bce6525..61ee1e096 100644
--- a/crypto/secp256k1/secp256k1/src/field_10x26.h
+++ b/crypto/secp256k1/libsecp256k1/src/field_10x26.h
@@ -16,20 +16,20 @@ typedef struct {
int magnitude;
int normalized;
#endif
-} secp256k1_fe_t;
+} secp256k1_fe;
/* Unpacks a constant into a overlapping multi-limbed FE element. */
#define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \
(d0) & 0x3FFFFFFUL, \
- ((d0) >> 26) | ((d1) & 0xFFFFFUL) << 6, \
- ((d1) >> 20) | ((d2) & 0x3FFFUL) << 12, \
- ((d2) >> 14) | ((d3) & 0xFFUL) << 18, \
- ((d3) >> 8) | ((d4) & 0x3) << 24, \
- ((d4) >> 2) & 0x3FFFFFFUL, \
- ((d4) >> 28) | ((d5) & 0x3FFFFFUL) << 4, \
- ((d5) >> 22) | ((d6) & 0xFFFF) << 10, \
- ((d6) >> 16) | ((d7) & 0x3FF) << 16, \
- ((d7) >> 10) \
+ (((uint32_t)d0) >> 26) | (((uint32_t)(d1) & 0xFFFFFUL) << 6), \
+ (((uint32_t)d1) >> 20) | (((uint32_t)(d2) & 0x3FFFUL) << 12), \
+ (((uint32_t)d2) >> 14) | (((uint32_t)(d3) & 0xFFUL) << 18), \
+ (((uint32_t)d3) >> 8) | (((uint32_t)(d4) & 0x3UL) << 24), \
+ (((uint32_t)d4) >> 2) & 0x3FFFFFFUL, \
+ (((uint32_t)d4) >> 28) | (((uint32_t)(d5) & 0x3FFFFFUL) << 4), \
+ (((uint32_t)d5) >> 22) | (((uint32_t)(d6) & 0xFFFFUL) << 10), \
+ (((uint32_t)d6) >> 16) | (((uint32_t)(d7) & 0x3FFUL) << 16), \
+ (((uint32_t)d7) >> 10) \
}
#ifdef VERIFY
@@ -40,8 +40,8 @@ typedef struct {
typedef struct {
uint32_t n[8];
-} secp256k1_fe_storage_t;
+} secp256k1_fe_storage;
#define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }}
-
+#define SECP256K1_FE_STORAGE_CONST_GET(d) d.n[7], d.n[6], d.n[5], d.n[4],d.n[3], d.n[2], d.n[1], d.n[0]
#endif
diff --git a/crypto/secp256k1/secp256k1/src/field_10x26_impl.h b/crypto/secp256k1/libsecp256k1/src/field_10x26_impl.h
index b32a666f5..212cc5396 100644
--- a/crypto/secp256k1/secp256k1/src/field_10x26_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/field_10x26_impl.h
@@ -14,7 +14,7 @@
#include "field.h"
#ifdef VERIFY
-static void secp256k1_fe_verify(const secp256k1_fe_t *a) {
+static void secp256k1_fe_verify(const secp256k1_fe *a) {
const uint32_t *d = a->n;
int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
r &= (d[0] <= 0x3FFFFFFUL * m);
@@ -41,12 +41,12 @@ static void secp256k1_fe_verify(const secp256k1_fe_t *a) {
VERIFY_CHECK(r == 1);
}
#else
-static void secp256k1_fe_verify(const secp256k1_fe_t *a) {
+static void secp256k1_fe_verify(const secp256k1_fe *a) {
(void)a;
}
#endif
-static void secp256k1_fe_normalize(secp256k1_fe_t *r) {
+static void secp256k1_fe_normalize(secp256k1_fe *r) {
uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4],
t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9];
@@ -101,7 +101,7 @@ static void secp256k1_fe_normalize(secp256k1_fe_t *r) {
#endif
}
-static void secp256k1_fe_normalize_weak(secp256k1_fe_t *r) {
+static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4],
t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9];
@@ -132,7 +132,7 @@ static void secp256k1_fe_normalize_weak(secp256k1_fe_t *r) {
#endif
}
-static void secp256k1_fe_normalize_var(secp256k1_fe_t *r) {
+static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4],
t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9];
@@ -188,7 +188,7 @@ static void secp256k1_fe_normalize_var(secp256k1_fe_t *r) {
#endif
}
-static int secp256k1_fe_normalizes_to_zero(secp256k1_fe_t *r) {
+static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) {
uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4],
t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9];
@@ -217,7 +217,7 @@ static int secp256k1_fe_normalizes_to_zero(secp256k1_fe_t *r) {
return (z0 == 0) | (z1 == 0x3FFFFFFUL);
}
-static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r) {
+static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) {
uint32_t t0, t1, t2, t3, t4, t5, t6, t7, t8, t9;
uint32_t z0, z1;
uint32_t x;
@@ -252,7 +252,7 @@ static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r) {
t9 &= 0x03FFFFFUL;
t1 += (x << 6);
- t1 += (t0 >> 26); t0 = z0;
+ t1 += (t0 >> 26);
t2 += (t1 >> 26); t1 &= 0x3FFFFFFUL; z0 |= t1; z1 &= t1 ^ 0x40UL;
t3 += (t2 >> 26); t2 &= 0x3FFFFFFUL; z0 |= t2; z1 &= t2;
t4 += (t3 >> 26); t3 &= 0x3FFFFFFUL; z0 |= t3; z1 &= t3;
@@ -269,7 +269,7 @@ static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r) {
return (z0 == 0) | (z1 == 0x3FFFFFFUL);
}
-SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a) {
+SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
r->n[0] = a;
r->n[1] = r->n[2] = r->n[3] = r->n[4] = r->n[5] = r->n[6] = r->n[7] = r->n[8] = r->n[9] = 0;
#ifdef VERIFY
@@ -279,7 +279,7 @@ SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a) {
#endif
}
-SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe_t *a) {
+SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
const uint32_t *t = a->n;
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
@@ -288,7 +288,7 @@ SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe_t *a) {
return (t[0] | t[1] | t[2] | t[3] | t[4] | t[5] | t[6] | t[7] | t[8] | t[9]) == 0;
}
-SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe_t *a) {
+SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
secp256k1_fe_verify(a);
@@ -296,7 +296,7 @@ SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe_t *a) {
return a->n[0] & 1;
}
-SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe_t *a) {
+SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
int i;
#ifdef VERIFY
a->magnitude = 0;
@@ -307,7 +307,7 @@ SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe_t *a) {
}
}
-static int secp256k1_fe_cmp_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
+static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
int i;
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
@@ -326,7 +326,7 @@ static int secp256k1_fe_cmp_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b
return 0;
}
-static int secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) {
+static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
int i;
r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
r->n[5] = r->n[6] = r->n[7] = r->n[8] = r->n[9] = 0;
@@ -350,7 +350,7 @@ static int secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) {
}
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
-static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) {
+static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
int i;
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
@@ -368,7 +368,7 @@ static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) {
}
}
-SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m) {
+SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
#ifdef VERIFY
VERIFY_CHECK(a->magnitude <= m);
secp256k1_fe_verify(a);
@@ -390,7 +390,7 @@ SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe_t *r, const secp25
#endif
}
-SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) {
+SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) {
r->n[0] *= a;
r->n[1] *= a;
r->n[2] *= a;
@@ -408,7 +408,7 @@ SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) {
#endif
}
-SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
+SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
#ifdef VERIFY
secp256k1_fe_verify(a);
#endif
@@ -1039,7 +1039,7 @@ SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint32_t *r, const uint32_t
}
-static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t * SECP256K1_RESTRICT b) {
+static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
#ifdef VERIFY
VERIFY_CHECK(a->magnitude <= 8);
VERIFY_CHECK(b->magnitude <= 8);
@@ -1055,7 +1055,7 @@ static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const s
#endif
}
-static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
+static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
#ifdef VERIFY
VERIFY_CHECK(a->magnitude <= 8);
secp256k1_fe_verify(a);
@@ -1068,7 +1068,29 @@ static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
#endif
}
-static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage_t *r, const secp256k1_fe_storage_t *a, int flag) {
+static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
+ uint32_t mask0, mask1;
+ mask0 = flag + ~((uint32_t)0);
+ mask1 = ~mask0;
+ r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
+ r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
+ r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
+ r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
+ r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1);
+ r->n[5] = (r->n[5] & mask0) | (a->n[5] & mask1);
+ r->n[6] = (r->n[6] & mask0) | (a->n[6] & mask1);
+ r->n[7] = (r->n[7] & mask0) | (a->n[7] & mask1);
+ r->n[8] = (r->n[8] & mask0) | (a->n[8] & mask1);
+ r->n[9] = (r->n[9] & mask0) | (a->n[9] & mask1);
+#ifdef VERIFY
+ if (a->magnitude > r->magnitude) {
+ r->magnitude = a->magnitude;
+ }
+ r->normalized &= a->normalized;
+#endif
+}
+
+static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) {
uint32_t mask0, mask1;
mask0 = flag + ~((uint32_t)0);
mask1 = ~mask0;
@@ -1082,7 +1104,7 @@ static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage_t *r
r->n[7] = (r->n[7] & mask0) | (a->n[7] & mask1);
}
-static void secp256k1_fe_to_storage(secp256k1_fe_storage_t *r, const secp256k1_fe_t *a) {
+static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
#endif
@@ -1096,7 +1118,7 @@ static void secp256k1_fe_to_storage(secp256k1_fe_storage_t *r, const secp256k1_f
r->n[7] = a->n[8] >> 16 | a->n[9] << 10;
}
-static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe_t *r, const secp256k1_fe_storage_t *a) {
+static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
r->n[0] = a->n[0] & 0x3FFFFFFUL;
r->n[1] = a->n[0] >> 26 | ((a->n[1] << 6) & 0x3FFFFFFUL);
r->n[2] = a->n[1] >> 20 | ((a->n[2] << 12) & 0x3FFFFFFUL);
diff --git a/crypto/secp256k1/secp256k1/src/field_5x52.h b/crypto/secp256k1/libsecp256k1/src/field_5x52.h
index 4513d36f4..8e69a560d 100644
--- a/crypto/secp256k1/secp256k1/src/field_5x52.h
+++ b/crypto/secp256k1/libsecp256k1/src/field_5x52.h
@@ -16,15 +16,15 @@ typedef struct {
int magnitude;
int normalized;
#endif
-} secp256k1_fe_t;
+} secp256k1_fe;
/* Unpacks a constant into a overlapping multi-limbed FE element. */
#define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \
- (d0) | ((uint64_t)(d1) & 0xFFFFFUL) << 32, \
- ((d1) >> 20) | ((uint64_t)(d2)) << 12 | ((uint64_t)(d3) & 0xFFUL) << 44, \
- ((d3) >> 8) | ((uint64_t)(d4) & 0xFFFFFFFUL) << 24, \
- ((d4) >> 28) | ((uint64_t)(d5)) << 4 | ((uint64_t)(d6) & 0xFFFFUL) << 36, \
- ((d6) >> 16) | ((uint64_t)(d7)) << 16 \
+ (d0) | (((uint64_t)(d1) & 0xFFFFFUL) << 32), \
+ ((uint64_t)(d1) >> 20) | (((uint64_t)(d2)) << 12) | (((uint64_t)(d3) & 0xFFUL) << 44), \
+ ((uint64_t)(d3) >> 8) | (((uint64_t)(d4) & 0xFFFFFFFUL) << 24), \
+ ((uint64_t)(d4) >> 28) | (((uint64_t)(d5)) << 4) | (((uint64_t)(d6) & 0xFFFFUL) << 36), \
+ ((uint64_t)(d6) >> 16) | (((uint64_t)(d7)) << 16) \
}
#ifdef VERIFY
@@ -35,13 +35,13 @@ typedef struct {
typedef struct {
uint64_t n[4];
-} secp256k1_fe_storage_t;
+} secp256k1_fe_storage;
#define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ \
- (d0) | ((uint64_t)(d1)) << 32, \
- (d2) | ((uint64_t)(d3)) << 32, \
- (d4) | ((uint64_t)(d5)) << 32, \
- (d6) | ((uint64_t)(d7)) << 32 \
+ (d0) | (((uint64_t)(d1)) << 32), \
+ (d2) | (((uint64_t)(d3)) << 32), \
+ (d4) | (((uint64_t)(d5)) << 32), \
+ (d6) | (((uint64_t)(d7)) << 32) \
}}
#endif
diff --git a/crypto/secp256k1/secp256k1/src/field_5x52_asm_impl.h b/crypto/secp256k1/libsecp256k1/src/field_5x52_asm_impl.h
index 98cc004bf..98cc004bf 100644
--- a/crypto/secp256k1/secp256k1/src/field_5x52_asm_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/field_5x52_asm_impl.h
diff --git a/crypto/secp256k1/secp256k1/src/field_5x52_impl.h b/crypto/secp256k1/libsecp256k1/src/field_5x52_impl.h
index 874d3caab..b31e24ab8 100644
--- a/crypto/secp256k1/secp256k1/src/field_5x52_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/field_5x52_impl.h
@@ -31,7 +31,7 @@
*/
#ifdef VERIFY
-static void secp256k1_fe_verify(const secp256k1_fe_t *a) {
+static void secp256k1_fe_verify(const secp256k1_fe *a) {
const uint64_t *d = a->n;
int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
/* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
@@ -51,12 +51,12 @@ static void secp256k1_fe_verify(const secp256k1_fe_t *a) {
VERIFY_CHECK(r == 1);
}
#else
-static void secp256k1_fe_verify(const secp256k1_fe_t *a) {
+static void secp256k1_fe_verify(const secp256k1_fe *a) {
(void)a;
}
#endif
-static void secp256k1_fe_normalize(secp256k1_fe_t *r) {
+static void secp256k1_fe_normalize(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
@@ -99,7 +99,7 @@ static void secp256k1_fe_normalize(secp256k1_fe_t *r) {
#endif
}
-static void secp256k1_fe_normalize_weak(secp256k1_fe_t *r) {
+static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
@@ -123,7 +123,7 @@ static void secp256k1_fe_normalize_weak(secp256k1_fe_t *r) {
#endif
}
-static void secp256k1_fe_normalize_var(secp256k1_fe_t *r) {
+static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
@@ -167,7 +167,7 @@ static void secp256k1_fe_normalize_var(secp256k1_fe_t *r) {
#endif
}
-static int secp256k1_fe_normalizes_to_zero(secp256k1_fe_t *r) {
+static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
@@ -190,7 +190,7 @@ static int secp256k1_fe_normalizes_to_zero(secp256k1_fe_t *r) {
return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
}
-static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r) {
+static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) {
uint64_t t0, t1, t2, t3, t4;
uint64_t z0, z1;
uint64_t x;
@@ -219,7 +219,7 @@ static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r) {
t4 &= 0x0FFFFFFFFFFFFULL;
- t1 += (t0 >> 52); t0 = z0;
+ t1 += (t0 >> 52);
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
@@ -231,7 +231,7 @@ static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r) {
return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
}
-SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a) {
+SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
r->n[0] = a;
r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
#ifdef VERIFY
@@ -241,7 +241,7 @@ SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a) {
#endif
}
-SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe_t *a) {
+SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
const uint64_t *t = a->n;
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
@@ -250,7 +250,7 @@ SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe_t *a) {
return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0;
}
-SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe_t *a) {
+SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
secp256k1_fe_verify(a);
@@ -258,7 +258,7 @@ SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe_t *a) {
return a->n[0] & 1;
}
-SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe_t *a) {
+SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
int i;
#ifdef VERIFY
a->magnitude = 0;
@@ -269,7 +269,7 @@ SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe_t *a) {
}
}
-static int secp256k1_fe_cmp_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
+static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
int i;
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
@@ -288,7 +288,7 @@ static int secp256k1_fe_cmp_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b
return 0;
}
-static int secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) {
+static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
int i;
r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
for (i=0; i<32; i++) {
@@ -311,7 +311,7 @@ static int secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) {
}
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
-static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) {
+static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
int i;
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
@@ -329,7 +329,7 @@ static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) {
}
}
-SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m) {
+SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
#ifdef VERIFY
VERIFY_CHECK(a->magnitude <= m);
secp256k1_fe_verify(a);
@@ -346,7 +346,7 @@ SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe_t *r, const secp25
#endif
}
-SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) {
+SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) {
r->n[0] *= a;
r->n[1] *= a;
r->n[2] *= a;
@@ -359,7 +359,7 @@ SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) {
#endif
}
-SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
+SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
#ifdef VERIFY
secp256k1_fe_verify(a);
#endif
@@ -375,7 +375,7 @@ SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1
#endif
}
-static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t * SECP256K1_RESTRICT b) {
+static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
#ifdef VERIFY
VERIFY_CHECK(a->magnitude <= 8);
VERIFY_CHECK(b->magnitude <= 8);
@@ -391,7 +391,7 @@ static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const s
#endif
}
-static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
+static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
#ifdef VERIFY
VERIFY_CHECK(a->magnitude <= 8);
secp256k1_fe_verify(a);
@@ -404,7 +404,24 @@ static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
#endif
}
-static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage_t *r, const secp256k1_fe_storage_t *a, int flag) {
+static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
+ uint64_t mask0, mask1;
+ mask0 = flag + ~((uint64_t)0);
+ mask1 = ~mask0;
+ r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
+ r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
+ r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
+ r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
+ r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1);
+#ifdef VERIFY
+ if (a->magnitude > r->magnitude) {
+ r->magnitude = a->magnitude;
+ }
+ r->normalized &= a->normalized;
+#endif
+}
+
+static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) {
uint64_t mask0, mask1;
mask0 = flag + ~((uint64_t)0);
mask1 = ~mask0;
@@ -414,7 +431,7 @@ static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage_t *r
r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
}
-static void secp256k1_fe_to_storage(secp256k1_fe_storage_t *r, const secp256k1_fe_t *a) {
+static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
#endif
@@ -424,7 +441,7 @@ static void secp256k1_fe_to_storage(secp256k1_fe_storage_t *r, const secp256k1_f
r->n[3] = a->n[3] >> 36 | a->n[4] << 16;
}
-static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe_t *r, const secp256k1_fe_storage_t *a) {
+static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL;
r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL);
r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL);
diff --git a/crypto/secp256k1/secp256k1/src/field_5x52_int128_impl.h b/crypto/secp256k1/libsecp256k1/src/field_5x52_int128_impl.h
index 9280bb5ea..9280bb5ea 100644
--- a/crypto/secp256k1/secp256k1/src/field_5x52_int128_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/field_5x52_int128_impl.h
diff --git a/crypto/secp256k1/secp256k1/src/field_impl.h b/crypto/secp256k1/libsecp256k1/src/field_impl.h
index e6ec11e8f..551a6243e 100644
--- a/crypto/secp256k1/secp256k1/src/field_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/field_impl.h
@@ -21,15 +21,15 @@
#error "Please select field implementation"
#endif
-SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
- secp256k1_fe_t na;
+SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) {
+ secp256k1_fe na;
secp256k1_fe_negate(&na, a, 1);
secp256k1_fe_add(&na, b);
return secp256k1_fe_normalizes_to_zero_var(&na);
}
-static int secp256k1_fe_sqrt_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
- secp256k1_fe_t x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
+static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a) {
+ secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
int j;
/** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
@@ -117,8 +117,8 @@ static int secp256k1_fe_sqrt_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
return secp256k1_fe_equal_var(&t1, a);
}
-static void secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
- secp256k1_fe_t x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
+static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) {
+ secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
int j;
/** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
@@ -207,11 +207,15 @@ static void secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
secp256k1_fe_mul(r, a, &t1);
}
-static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
+static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) {
#if defined(USE_FIELD_INV_BUILTIN)
secp256k1_fe_inv(r, a);
#elif defined(USE_FIELD_INV_NUM)
- secp256k1_num_t n, m;
+ secp256k1_num n, m;
+ static const secp256k1_fe negone = SECP256K1_FE_CONST(
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0xFFFFFC2EUL
+ );
/* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
static const unsigned char prime[32] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
@@ -220,7 +224,7 @@ static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
};
unsigned char b[32];
- secp256k1_fe_t c = *a;
+ secp256k1_fe c = *a;
secp256k1_fe_normalize_var(&c);
secp256k1_fe_get_b32(b, &c);
secp256k1_num_set_bin(&n, b, 32);
@@ -228,13 +232,17 @@ static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
secp256k1_num_mod_inverse(&n, &n, &m);
secp256k1_num_get_bin(b, 32, &n);
VERIFY_CHECK(secp256k1_fe_set_b32(r, b));
+ /* Verify the result is the (unique) valid inverse using non-GMP code. */
+ secp256k1_fe_mul(&c, &c, r);
+ secp256k1_fe_add(&c, &negone);
+ CHECK(secp256k1_fe_normalizes_to_zero_var(&c));
#else
#error "Please select field inverse implementation"
#endif
}
-static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe_t *r, const secp256k1_fe_t *a) {
- secp256k1_fe_t u;
+static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe *r, const secp256k1_fe *a) {
+ secp256k1_fe u;
size_t i;
if (len < 1) {
return;
@@ -252,7 +260,7 @@ static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe_t *r, const secp25
secp256k1_fe_inv_var(&u, &r[--i]);
while (i > 0) {
- int j = i--;
+ size_t j = i--;
secp256k1_fe_mul(&r[j], &r[i], &u);
secp256k1_fe_mul(&u, &u, &a[j]);
}
diff --git a/crypto/secp256k1/libsecp256k1/src/gen_context.c b/crypto/secp256k1/libsecp256k1/src/gen_context.c
new file mode 100644
index 000000000..1835fd491
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/gen_context.c
@@ -0,0 +1,74 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014, 2015 Thomas Daede, Cory Fields *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#define USE_BASIC_CONFIG 1
+
+#include "basic-config.h"
+#include "include/secp256k1.h"
+#include "field_impl.h"
+#include "scalar_impl.h"
+#include "group_impl.h"
+#include "ecmult_gen_impl.h"
+
+static void default_error_callback_fn(const char* str, void* data) {
+ (void)data;
+ fprintf(stderr, "[libsecp256k1] internal consistency check failed: %s\n", str);
+ abort();
+}
+
+static const secp256k1_callback default_error_callback = {
+ default_error_callback_fn,
+ NULL
+};
+
+int main(int argc, char **argv) {
+ secp256k1_ecmult_gen_context ctx;
+ int inner;
+ int outer;
+ FILE* fp;
+
+ (void)argc;
+ (void)argv;
+
+ fp = fopen("src/ecmult_static_context.h","w");
+ if (fp == NULL) {
+ fprintf(stderr, "Could not open src/ecmult_static_context.h for writing!\n");
+ return -1;
+ }
+
+ fprintf(fp, "#ifndef _SECP256K1_ECMULT_STATIC_CONTEXT_\n");
+ fprintf(fp, "#define _SECP256K1_ECMULT_STATIC_CONTEXT_\n");
+ fprintf(fp, "#include \"group.h\"\n");
+ fprintf(fp, "#define SC SECP256K1_GE_STORAGE_CONST\n");
+ fprintf(fp, "static const secp256k1_ge_storage secp256k1_ecmult_static_context[64][16] = {\n");
+
+ secp256k1_ecmult_gen_context_init(&ctx);
+ secp256k1_ecmult_gen_context_build(&ctx, &default_error_callback);
+ for(outer = 0; outer != 64; outer++) {
+ fprintf(fp,"{\n");
+ for(inner = 0; inner != 16; inner++) {
+ fprintf(fp," SC(%uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu)", SECP256K1_GE_STORAGE_CONST_GET((*ctx.prec)[outer][inner]));
+ if (inner != 15) {
+ fprintf(fp,",\n");
+ } else {
+ fprintf(fp,"\n");
+ }
+ }
+ if (outer != 63) {
+ fprintf(fp,"},\n");
+ } else {
+ fprintf(fp,"}\n");
+ }
+ }
+ fprintf(fp,"};\n");
+ secp256k1_ecmult_gen_context_clear(&ctx);
+
+ fprintf(fp, "#undef SC\n");
+ fprintf(fp, "#endif\n");
+ fclose(fp);
+
+ return 0;
+}
diff --git a/crypto/secp256k1/libsecp256k1/src/group.h b/crypto/secp256k1/libsecp256k1/src/group.h
new file mode 100644
index 000000000..89b079d5c
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/group.h
@@ -0,0 +1,141 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_GROUP_
+#define _SECP256K1_GROUP_
+
+#include "num.h"
+#include "field.h"
+
+/** A group element of the secp256k1 curve, in affine coordinates. */
+typedef struct {
+ secp256k1_fe x;
+ secp256k1_fe y;
+ int infinity; /* whether this represents the point at infinity */
+} secp256k1_ge;
+
+#define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0}
+#define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
+
+/** A group element of the secp256k1 curve, in jacobian coordinates. */
+typedef struct {
+ secp256k1_fe x; /* actual X: x/z^2 */
+ secp256k1_fe y; /* actual Y: y/z^3 */
+ secp256k1_fe z;
+ int infinity; /* whether this represents the point at infinity */
+} secp256k1_gej;
+
+#define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0}
+#define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
+
+typedef struct {
+ secp256k1_fe_storage x;
+ secp256k1_fe_storage y;
+} secp256k1_ge_storage;
+
+#define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))}
+
+#define SECP256K1_GE_STORAGE_CONST_GET(t) SECP256K1_FE_STORAGE_CONST_GET(t.x), SECP256K1_FE_STORAGE_CONST_GET(t.y)
+
+/** Set a group element equal to the point at infinity */
+static void secp256k1_ge_set_infinity(secp256k1_ge *r);
+
+/** Set a group element equal to the point with given X and Y coordinates */
+static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y);
+
+/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
+ * for Y. Return value indicates whether the result is valid. */
+static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
+
+/** Check whether a group element is the point at infinity. */
+static int secp256k1_ge_is_infinity(const secp256k1_ge *a);
+
+/** Check whether a group element is valid (i.e., on the curve). */
+static int secp256k1_ge_is_valid_var(const secp256k1_ge *a);
+
+static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a);
+
+/** Set a group element equal to another which is given in jacobian coordinates */
+static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a);
+
+/** Set a batch of group elements equal to the inputs given in jacobian coordinates */
+static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_callback *cb);
+
+/** Set a batch of group elements equal to the inputs given in jacobian
+ * coordinates (with known z-ratios). zr must contain the known z-ratios such
+ * that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. */
+static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr);
+
+/** Bring a batch inputs given in jacobian coordinates (with known z-ratios) to
+ * the same global z "denominator". zr must contain the known z-ratios such
+ * that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. The x and y
+ * coordinates of the result are stored in r, the common z coordinate is
+ * stored in globalz. */
+static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr);
+
+/** Set a group element (jacobian) equal to the point at infinity. */
+static void secp256k1_gej_set_infinity(secp256k1_gej *r);
+
+/** Set a group element (jacobian) equal to the point with given X and Y coordinates. */
+static void secp256k1_gej_set_xy(secp256k1_gej *r, const secp256k1_fe *x, const secp256k1_fe *y);
+
+/** Set a group element (jacobian) equal to another which is given in affine coordinates. */
+static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a);
+
+/** Compare the X coordinate of a group element (jacobian). */
+static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a);
+
+/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
+static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a);
+
+/** Check whether a group element is the point at infinity. */
+static int secp256k1_gej_is_infinity(const secp256k1_gej *a);
+
+/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0).
+ * a may not be zero. Constant time. */
+static void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
+
+/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0). */
+static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
+
+/** Set r equal to the sum of a and b. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */
+static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr);
+
+/** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */
+static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b);
+
+/** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient
+ than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time
+ guarantee, and b is allowed to be infinity. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */
+static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr);
+
+/** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */
+static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv);
+
+#ifdef USE_ENDOMORPHISM
+/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
+static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a);
+#endif
+
+/** Clear a secp256k1_gej to prevent leaking sensitive information. */
+static void secp256k1_gej_clear(secp256k1_gej *r);
+
+/** Clear a secp256k1_ge to prevent leaking sensitive information. */
+static void secp256k1_ge_clear(secp256k1_ge *r);
+
+/** Convert a group element to the storage type. */
+static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a);
+
+/** Convert a group element back from the storage type. */
+static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a);
+
+/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
+static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag);
+
+/** Rescale a jacobian point by b which must be non-zero. Constant-time. */
+static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b);
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/group_impl.h b/crypto/secp256k1/libsecp256k1/src/group_impl.h
new file mode 100644
index 000000000..fe0a35929
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/group_impl.h
@@ -0,0 +1,632 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_GROUP_IMPL_H_
+#define _SECP256K1_GROUP_IMPL_H_
+
+#include <string.h>
+
+#include "num.h"
+#include "field.h"
+#include "group.h"
+
+/** Generator for secp256k1, value 'g' defined in
+ * "Standards for Efficient Cryptography" (SEC2) 2.7.1.
+ */
+static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
+ 0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL,
+ 0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL,
+ 0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL,
+ 0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
+);
+
+static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) {
+ secp256k1_fe zi2;
+ secp256k1_fe zi3;
+ secp256k1_fe_sqr(&zi2, zi);
+ secp256k1_fe_mul(&zi3, &zi2, zi);
+ secp256k1_fe_mul(&r->x, &a->x, &zi2);
+ secp256k1_fe_mul(&r->y, &a->y, &zi3);
+ r->infinity = a->infinity;
+}
+
+static void secp256k1_ge_set_infinity(secp256k1_ge *r) {
+ r->infinity = 1;
+}
+
+static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) {
+ r->infinity = 0;
+ r->x = *x;
+ r->y = *y;
+}
+
+static int secp256k1_ge_is_infinity(const secp256k1_ge *a) {
+ return a->infinity;
+}
+
+static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) {
+ *r = *a;
+ secp256k1_fe_normalize_weak(&r->y);
+ secp256k1_fe_negate(&r->y, &r->y, 1);
+}
+
+static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) {
+ secp256k1_fe z2, z3;
+ r->infinity = a->infinity;
+ secp256k1_fe_inv(&a->z, &a->z);
+ secp256k1_fe_sqr(&z2, &a->z);
+ secp256k1_fe_mul(&z3, &a->z, &z2);
+ secp256k1_fe_mul(&a->x, &a->x, &z2);
+ secp256k1_fe_mul(&a->y, &a->y, &z3);
+ secp256k1_fe_set_int(&a->z, 1);
+ r->x = a->x;
+ r->y = a->y;
+}
+
+static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) {
+ secp256k1_fe z2, z3;
+ r->infinity = a->infinity;
+ if (a->infinity) {
+ return;
+ }
+ secp256k1_fe_inv_var(&a->z, &a->z);
+ secp256k1_fe_sqr(&z2, &a->z);
+ secp256k1_fe_mul(&z3, &a->z, &z2);
+ secp256k1_fe_mul(&a->x, &a->x, &z2);
+ secp256k1_fe_mul(&a->y, &a->y, &z3);
+ secp256k1_fe_set_int(&a->z, 1);
+ r->x = a->x;
+ r->y = a->y;
+}
+
+static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_callback *cb) {
+ secp256k1_fe *az;
+ secp256k1_fe *azi;
+ size_t i;
+ size_t count = 0;
+ az = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * len);
+ for (i = 0; i < len; i++) {
+ if (!a[i].infinity) {
+ az[count++] = a[i].z;
+ }
+ }
+
+ azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count);
+ secp256k1_fe_inv_all_var(count, azi, az);
+ free(az);
+
+ count = 0;
+ for (i = 0; i < len; i++) {
+ r[i].infinity = a[i].infinity;
+ if (!a[i].infinity) {
+ secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]);
+ }
+ }
+ free(azi);
+}
+
+static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr) {
+ size_t i = len - 1;
+ secp256k1_fe zi;
+
+ if (len > 0) {
+ /* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */
+ secp256k1_fe_inv(&zi, &a[i].z);
+ secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
+
+ /* Work out way backwards, using the z-ratios to scale the x/y values. */
+ while (i > 0) {
+ secp256k1_fe_mul(&zi, &zi, &zr[i]);
+ i--;
+ secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
+ }
+ }
+}
+
+static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) {
+ size_t i = len - 1;
+ secp256k1_fe zs;
+
+ if (len > 0) {
+ /* The z of the final point gives us the "global Z" for the table. */
+ r[i].x = a[i].x;
+ r[i].y = a[i].y;
+ *globalz = a[i].z;
+ r[i].infinity = 0;
+ zs = zr[i];
+
+ /* Work our way backwards, using the z-ratios to scale the x/y values. */
+ while (i > 0) {
+ if (i != len - 1) {
+ secp256k1_fe_mul(&zs, &zs, &zr[i]);
+ }
+ i--;
+ secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs);
+ }
+ }
+}
+
+static void secp256k1_gej_set_infinity(secp256k1_gej *r) {
+ r->infinity = 1;
+ secp256k1_fe_set_int(&r->x, 0);
+ secp256k1_fe_set_int(&r->y, 0);
+ secp256k1_fe_set_int(&r->z, 0);
+}
+
+static void secp256k1_gej_set_xy(secp256k1_gej *r, const secp256k1_fe *x, const secp256k1_fe *y) {
+ r->infinity = 0;
+ r->x = *x;
+ r->y = *y;
+ secp256k1_fe_set_int(&r->z, 1);
+}
+
+static void secp256k1_gej_clear(secp256k1_gej *r) {
+ r->infinity = 0;
+ secp256k1_fe_clear(&r->x);
+ secp256k1_fe_clear(&r->y);
+ secp256k1_fe_clear(&r->z);
+}
+
+static void secp256k1_ge_clear(secp256k1_ge *r) {
+ r->infinity = 0;
+ secp256k1_fe_clear(&r->x);
+ secp256k1_fe_clear(&r->y);
+}
+
+static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
+ secp256k1_fe x2, x3, c;
+ r->x = *x;
+ secp256k1_fe_sqr(&x2, x);
+ secp256k1_fe_mul(&x3, x, &x2);
+ r->infinity = 0;
+ secp256k1_fe_set_int(&c, 7);
+ secp256k1_fe_add(&c, &x3);
+ if (!secp256k1_fe_sqrt_var(&r->y, &c)) {
+ return 0;
+ }
+ secp256k1_fe_normalize_var(&r->y);
+ if (secp256k1_fe_is_odd(&r->y) != odd) {
+ secp256k1_fe_negate(&r->y, &r->y, 1);
+ }
+ return 1;
+}
+
+static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) {
+ r->infinity = a->infinity;
+ r->x = a->x;
+ r->y = a->y;
+ secp256k1_fe_set_int(&r->z, 1);
+}
+
+static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) {
+ secp256k1_fe r, r2;
+ VERIFY_CHECK(!a->infinity);
+ secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
+ r2 = a->x; secp256k1_fe_normalize_weak(&r2);
+ return secp256k1_fe_equal_var(&r, &r2);
+}
+
+static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) {
+ r->infinity = a->infinity;
+ r->x = a->x;
+ r->y = a->y;
+ r->z = a->z;
+ secp256k1_fe_normalize_weak(&r->y);
+ secp256k1_fe_negate(&r->y, &r->y, 1);
+}
+
+static int secp256k1_gej_is_infinity(const secp256k1_gej *a) {
+ return a->infinity;
+}
+
+static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) {
+ secp256k1_fe y2, x3, z2, z6;
+ if (a->infinity) {
+ return 0;
+ }
+ /** y^2 = x^3 + 7
+ * (Y/Z^3)^2 = (X/Z^2)^3 + 7
+ * Y^2 / Z^6 = X^3 / Z^6 + 7
+ * Y^2 = X^3 + 7*Z^6
+ */
+ secp256k1_fe_sqr(&y2, &a->y);
+ secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
+ secp256k1_fe_sqr(&z2, &a->z);
+ secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2);
+ secp256k1_fe_mul_int(&z6, 7);
+ secp256k1_fe_add(&x3, &z6);
+ secp256k1_fe_normalize_weak(&x3);
+ return secp256k1_fe_equal_var(&y2, &x3);
+}
+
+static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
+ secp256k1_fe y2, x3, c;
+ if (a->infinity) {
+ return 0;
+ }
+ /* y^2 = x^3 + 7 */
+ secp256k1_fe_sqr(&y2, &a->y);
+ secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
+ secp256k1_fe_set_int(&c, 7);
+ secp256k1_fe_add(&x3, &c);
+ secp256k1_fe_normalize_weak(&x3);
+ return secp256k1_fe_equal_var(&y2, &x3);
+}
+
+static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
+ /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate */
+ secp256k1_fe t1,t2,t3,t4;
+ /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
+ * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
+ * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
+ */
+ r->infinity = a->infinity;
+ if (r->infinity) {
+ if (rzr != NULL) {
+ secp256k1_fe_set_int(rzr, 1);
+ }
+ return;
+ }
+
+ if (rzr != NULL) {
+ *rzr = a->y;
+ secp256k1_fe_normalize_weak(rzr);
+ secp256k1_fe_mul_int(rzr, 2);
+ }
+
+ secp256k1_fe_mul(&r->z, &a->z, &a->y);
+ secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */
+ secp256k1_fe_sqr(&t1, &a->x);
+ secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */
+ secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */
+ secp256k1_fe_sqr(&t3, &a->y);
+ secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */
+ secp256k1_fe_sqr(&t4, &t3);
+ secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */
+ secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */
+ r->x = t3;
+ secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */
+ secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */
+ secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */
+ secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */
+ secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */
+ secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */
+ secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */
+ secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */
+ secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */
+}
+
+static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
+ VERIFY_CHECK(!secp256k1_gej_is_infinity(a));
+ secp256k1_gej_double_var(r, a, rzr);
+}
+
+static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) {
+ /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */
+ secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
+
+ if (a->infinity) {
+ VERIFY_CHECK(rzr == NULL);
+ *r = *b;
+ return;
+ }
+
+ if (b->infinity) {
+ if (rzr != NULL) {
+ secp256k1_fe_set_int(rzr, 1);
+ }
+ *r = *a;
+ return;
+ }
+
+ r->infinity = 0;
+ secp256k1_fe_sqr(&z22, &b->z);
+ secp256k1_fe_sqr(&z12, &a->z);
+ secp256k1_fe_mul(&u1, &a->x, &z22);
+ secp256k1_fe_mul(&u2, &b->x, &z12);
+ secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z);
+ secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
+ secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
+ secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
+ if (secp256k1_fe_normalizes_to_zero_var(&h)) {
+ if (secp256k1_fe_normalizes_to_zero_var(&i)) {
+ secp256k1_gej_double_var(r, a, rzr);
+ } else {
+ if (rzr != NULL) {
+ secp256k1_fe_set_int(rzr, 0);
+ }
+ r->infinity = 1;
+ }
+ return;
+ }
+ secp256k1_fe_sqr(&i2, &i);
+ secp256k1_fe_sqr(&h2, &h);
+ secp256k1_fe_mul(&h3, &h, &h2);
+ secp256k1_fe_mul(&h, &h, &b->z);
+ if (rzr != NULL) {
+ *rzr = h;
+ }
+ secp256k1_fe_mul(&r->z, &a->z, &h);
+ secp256k1_fe_mul(&t, &u1, &h2);
+ r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
+ secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
+ secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
+ secp256k1_fe_add(&r->y, &h3);
+}
+
+static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) {
+ /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
+ secp256k1_fe z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
+ if (a->infinity) {
+ VERIFY_CHECK(rzr == NULL);
+ secp256k1_gej_set_ge(r, b);
+ return;
+ }
+ if (b->infinity) {
+ if (rzr != NULL) {
+ secp256k1_fe_set_int(rzr, 1);
+ }
+ *r = *a;
+ return;
+ }
+ r->infinity = 0;
+
+ secp256k1_fe_sqr(&z12, &a->z);
+ u1 = a->x; secp256k1_fe_normalize_weak(&u1);
+ secp256k1_fe_mul(&u2, &b->x, &z12);
+ s1 = a->y; secp256k1_fe_normalize_weak(&s1);
+ secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
+ secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
+ secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
+ if (secp256k1_fe_normalizes_to_zero_var(&h)) {
+ if (secp256k1_fe_normalizes_to_zero_var(&i)) {
+ secp256k1_gej_double_var(r, a, rzr);
+ } else {
+ if (rzr != NULL) {
+ secp256k1_fe_set_int(rzr, 0);
+ }
+ r->infinity = 1;
+ }
+ return;
+ }
+ secp256k1_fe_sqr(&i2, &i);
+ secp256k1_fe_sqr(&h2, &h);
+ secp256k1_fe_mul(&h3, &h, &h2);
+ if (rzr != NULL) {
+ *rzr = h;
+ }
+ secp256k1_fe_mul(&r->z, &a->z, &h);
+ secp256k1_fe_mul(&t, &u1, &h2);
+ r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
+ secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
+ secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
+ secp256k1_fe_add(&r->y, &h3);
+}
+
+static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) {
+ /* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
+ secp256k1_fe az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
+
+ if (b->infinity) {
+ *r = *a;
+ return;
+ }
+ if (a->infinity) {
+ secp256k1_fe bzinv2, bzinv3;
+ r->infinity = b->infinity;
+ secp256k1_fe_sqr(&bzinv2, bzinv);
+ secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv);
+ secp256k1_fe_mul(&r->x, &b->x, &bzinv2);
+ secp256k1_fe_mul(&r->y, &b->y, &bzinv3);
+ secp256k1_fe_set_int(&r->z, 1);
+ return;
+ }
+ r->infinity = 0;
+
+ /** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to
+ * secp256k1's isomorphism we can multiply the Z coordinates on both sides
+ * by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1).
+ * This means that (rx,ry,rz) can be calculated as
+ * (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz.
+ * The variable az below holds the modified Z coordinate for a, which is used
+ * for the computation of rx and ry, but not for rz.
+ */
+ secp256k1_fe_mul(&az, &a->z, bzinv);
+
+ secp256k1_fe_sqr(&z12, &az);
+ u1 = a->x; secp256k1_fe_normalize_weak(&u1);
+ secp256k1_fe_mul(&u2, &b->x, &z12);
+ s1 = a->y; secp256k1_fe_normalize_weak(&s1);
+ secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az);
+ secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
+ secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
+ if (secp256k1_fe_normalizes_to_zero_var(&h)) {
+ if (secp256k1_fe_normalizes_to_zero_var(&i)) {
+ secp256k1_gej_double_var(r, a, NULL);
+ } else {
+ r->infinity = 1;
+ }
+ return;
+ }
+ secp256k1_fe_sqr(&i2, &i);
+ secp256k1_fe_sqr(&h2, &h);
+ secp256k1_fe_mul(&h3, &h, &h2);
+ r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h);
+ secp256k1_fe_mul(&t, &u1, &h2);
+ r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
+ secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
+ secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
+ secp256k1_fe_add(&r->y, &h3);
+}
+
+
+static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) {
+ /* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */
+ static const secp256k1_fe fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
+ secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
+ secp256k1_fe m_alt, rr_alt;
+ int infinity, degenerate;
+ VERIFY_CHECK(!b->infinity);
+ VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
+
+ /** In:
+ * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks.
+ * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002.
+ * we find as solution for a unified addition/doubling formula:
+ * lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation.
+ * x3 = lambda^2 - (x1 + x2)
+ * 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2).
+ *
+ * Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives:
+ * U1 = X1*Z2^2, U2 = X2*Z1^2
+ * S1 = Y1*Z2^3, S2 = Y2*Z1^3
+ * Z = Z1*Z2
+ * T = U1+U2
+ * M = S1+S2
+ * Q = T*M^2
+ * R = T^2-U1*U2
+ * X3 = 4*(R^2-Q)
+ * Y3 = 4*(R*(3*Q-2*R^2)-M^4)
+ * Z3 = 2*M*Z
+ * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.)
+ *
+ * This formula has the benefit of being the same for both addition
+ * of distinct points and doubling. However, it breaks down in the
+ * case that either point is infinity, or that y1 = -y2. We handle
+ * these cases in the following ways:
+ *
+ * - If b is infinity we simply bail by means of a VERIFY_CHECK.
+ *
+ * - If a is infinity, we detect this, and at the end of the
+ * computation replace the result (which will be meaningless,
+ * but we compute to be constant-time) with b.x : b.y : 1.
+ *
+ * - If a = -b, we have y1 = -y2, which is a degenerate case.
+ * But here the answer is infinity, so we simply set the
+ * infinity flag of the result, overriding the computed values
+ * without even needing to cmov.
+ *
+ * - If y1 = -y2 but x1 != x2, which does occur thanks to certain
+ * properties of our curve (specifically, 1 has nontrivial cube
+ * roots in our field, and the curve equation has no x coefficient)
+ * then the answer is not infinity but also not given by the above
+ * equation. In this case, we cmov in place an alternate expression
+ * for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these
+ * expressions for lambda are defined, they are equal, and can be
+ * obtained from each other by multiplication by (y1 + y2)/(y1 + y2)
+ * then substitution of x^3 + 7 for y^2 (using the curve equation).
+ * For all pairs of nonzero points (a, b) at least one is defined,
+ * so this covers everything.
+ */
+
+ secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */
+ u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */
+ secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */
+ s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */
+ secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */
+ secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */
+ t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */
+ m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */
+ secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
+ secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */
+ secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */
+ secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */
+ /** If lambda = R/M = 0/0 we have a problem (except in the "trivial"
+ * case that Z = z1z2 = 0, and this is special-cased later on). */
+ degenerate = secp256k1_fe_normalizes_to_zero(&m) &
+ secp256k1_fe_normalizes_to_zero(&rr);
+ /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
+ * This means either x1 == beta*x2 or beta*x1 == x2, where beta is
+ * a nontrivial cube root of one. In either case, an alternate
+ * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
+ * so we set R/M equal to this. */
+ rr_alt = s1;
+ secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */
+ secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */
+
+ secp256k1_fe_cmov(&rr_alt, &rr, !degenerate);
+ secp256k1_fe_cmov(&m_alt, &m, !degenerate);
+ /* Now Ralt / Malt = lambda and is guaranteed not to be 0/0.
+ * From here on out Ralt and Malt represent the numerator
+ * and denominator of lambda; R and M represent the explicit
+ * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
+ secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */
+ secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*Malt^2 (1) */
+ /* These two lines use the observation that either M == Malt or M == 0,
+ * so M^3 * Malt is either Malt^4 (which is computed by squaring), or
+ * zero (which is "computed" by cmov). So the cost is one squaring
+ * versus two multiplications. */
+ secp256k1_fe_sqr(&n, &n);
+ secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */
+ secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
+ secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Malt*Z (1) */
+ infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity);
+ secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */
+ secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */
+ secp256k1_fe_add(&t, &q); /* t = Ralt^2-Q (3) */
+ secp256k1_fe_normalize_weak(&t);
+ r->x = t; /* r->x = Ralt^2-Q (1) */
+ secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */
+ secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (4) */
+ secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*x3 - Q) (1) */
+ secp256k1_fe_add(&t, &n); /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */
+ secp256k1_fe_negate(&r->y, &t, 3); /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */
+ secp256k1_fe_normalize_weak(&r->y);
+ secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(Ralt^2-Q) */
+ secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */
+
+ /** In case a->infinity == 1, replace r with (b->x, b->y, 1). */
+ secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
+ secp256k1_fe_cmov(&r->y, &b->y, a->infinity);
+ secp256k1_fe_cmov(&r->z, &fe_1, a->infinity);
+ r->infinity = infinity;
+}
+
+static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) {
+ /* Operations: 4 mul, 1 sqr */
+ secp256k1_fe zz;
+ VERIFY_CHECK(!secp256k1_fe_is_zero(s));
+ secp256k1_fe_sqr(&zz, s);
+ secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */
+ secp256k1_fe_mul(&r->y, &r->y, &zz);
+ secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */
+ secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */
+}
+
+static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) {
+ secp256k1_fe x, y;
+ VERIFY_CHECK(!a->infinity);
+ x = a->x;
+ secp256k1_fe_normalize(&x);
+ y = a->y;
+ secp256k1_fe_normalize(&y);
+ secp256k1_fe_to_storage(&r->x, &x);
+ secp256k1_fe_to_storage(&r->y, &y);
+}
+
+static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) {
+ secp256k1_fe_from_storage(&r->x, &a->x);
+ secp256k1_fe_from_storage(&r->y, &a->y);
+ r->infinity = 0;
+}
+
+static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) {
+ secp256k1_fe_storage_cmov(&r->x, &a->x, flag);
+ secp256k1_fe_storage_cmov(&r->y, &a->y, flag);
+}
+
+#ifdef USE_ENDOMORPHISM
+static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
+ static const secp256k1_fe beta = SECP256K1_FE_CONST(
+ 0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
+ 0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
+ );
+ *r = *a;
+ secp256k1_fe_mul(&r->x, &r->x, &beta);
+}
+#endif
+
+#endif
diff --git a/crypto/secp256k1/secp256k1/src/hash.h b/crypto/secp256k1/libsecp256k1/src/hash.h
index 843423d7f..0ff01e63f 100644
--- a/crypto/secp256k1/secp256k1/src/hash.h
+++ b/crypto/secp256k1/libsecp256k1/src/hash.h
@@ -34,7 +34,7 @@ typedef struct {
int retry;
} secp256k1_rfc6979_hmac_sha256_t;
-static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256_t *rng, const unsigned char *key, size_t keylen, const unsigned char *msg, size_t msglen, const unsigned char *rnd, size_t rndlen);
+static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256_t *rng, const unsigned char *key, size_t keylen);
static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256_t *rng, unsigned char *out, size_t outlen);
static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256_t *rng);
diff --git a/crypto/secp256k1/secp256k1/src/hash_impl.h b/crypto/secp256k1/libsecp256k1/src/hash_impl.h
index 9828827bc..ae55df6d8 100644
--- a/crypto/secp256k1/secp256k1/src/hash_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/hash_impl.h
@@ -202,7 +202,7 @@ static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256_t *hash, unsign
}
-static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256_t *rng, const unsigned char *key, size_t keylen, const unsigned char *msg, size_t msglen, const unsigned char *rnd, size_t rndlen) {
+static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256_t *rng, const unsigned char *key, size_t keylen) {
secp256k1_hmac_sha256_t hmac;
static const unsigned char zero[1] = {0x00};
static const unsigned char one[1] = {0x01};
@@ -215,11 +215,6 @@ static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha2
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_write(&hmac, zero, 1);
secp256k1_hmac_sha256_write(&hmac, key, keylen);
- secp256k1_hmac_sha256_write(&hmac, msg, msglen);
- if (rnd && rndlen) {
- /* RFC6979 3.6 "Additional data". */
- secp256k1_hmac_sha256_write(&hmac, rnd, rndlen);
- }
secp256k1_hmac_sha256_finalize(&hmac, rng->k);
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
@@ -230,11 +225,6 @@ static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha2
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_write(&hmac, one, 1);
secp256k1_hmac_sha256_write(&hmac, key, keylen);
- secp256k1_hmac_sha256_write(&hmac, msg, msglen);
- if (rnd && rndlen) {
- /* RFC6979 3.6 "Additional data". */
- secp256k1_hmac_sha256_write(&hmac, rnd, rndlen);
- }
secp256k1_hmac_sha256_finalize(&hmac, rng->k);
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
diff --git a/crypto/secp256k1/secp256k1/src/java/org/bitcoin/NativeSecp256k1.java b/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1.java
index 90a498eaa..90a498eaa 100644
--- a/crypto/secp256k1/secp256k1/src/java/org/bitcoin/NativeSecp256k1.java
+++ b/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1.java
diff --git a/crypto/secp256k1/secp256k1/src/java/org_bitcoin_NativeSecp256k1.c b/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.c
index bb4cd7072..bb4cd7072 100644
--- a/crypto/secp256k1/secp256k1/src/java/org_bitcoin_NativeSecp256k1.c
+++ b/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.c
diff --git a/crypto/secp256k1/secp256k1/src/java/org_bitcoin_NativeSecp256k1.h b/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.h
index d7fb004fa..d7fb004fa 100644
--- a/crypto/secp256k1/secp256k1/src/java/org_bitcoin_NativeSecp256k1.h
+++ b/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.h
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/ecdh/Makefile.am.include b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/Makefile.am.include
new file mode 100644
index 000000000..8ef3aff92
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/Makefile.am.include
@@ -0,0 +1,9 @@
+include_HEADERS += include/secp256k1_ecdh.h
+noinst_HEADERS += src/modules/ecdh/main_impl.h
+noinst_HEADERS += src/modules/ecdh/tests_impl.h
+if USE_BENCHMARK
+noinst_PROGRAMS += bench_ecdh
+bench_ecdh_SOURCES = src/bench_ecdh.c
+bench_ecdh_LDADD = libsecp256k1.la $(SECP_LIBS)
+bench_ecdh_LDFLAGS = -static
+endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/ecdh/main_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/main_impl.h
new file mode 100644
index 000000000..c23e4f82f
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/main_impl.h
@@ -0,0 +1,54 @@
+/**********************************************************************
+ * Copyright (c) 2015 Andrew Poelstra *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_MODULE_ECDH_MAIN_
+#define _SECP256K1_MODULE_ECDH_MAIN_
+
+#include "include/secp256k1_ecdh.h"
+#include "ecmult_const_impl.h"
+
+int secp256k1_ecdh(const secp256k1_context* ctx, unsigned char *result, const secp256k1_pubkey *point, const unsigned char *scalar) {
+ int ret = 0;
+ int overflow = 0;
+ secp256k1_gej res;
+ secp256k1_ge pt;
+ secp256k1_scalar s;
+ ARG_CHECK(result != NULL);
+ ARG_CHECK(point != NULL);
+ ARG_CHECK(scalar != NULL);
+ (void)ctx;
+
+ secp256k1_pubkey_load(ctx, &pt, point);
+ secp256k1_scalar_set_b32(&s, scalar, &overflow);
+ if (overflow || secp256k1_scalar_is_zero(&s)) {
+ ret = 0;
+ } else {
+ unsigned char x[32];
+ unsigned char y[1];
+ secp256k1_sha256_t sha;
+
+ secp256k1_ecmult_const(&res, &pt, &s);
+ secp256k1_ge_set_gej(&pt, &res);
+ /* Compute a hash of the point in compressed form
+ * Note we cannot use secp256k1_eckey_pubkey_serialize here since it does not
+ * expect its output to be secret and has a timing sidechannel. */
+ secp256k1_fe_normalize(&pt.x);
+ secp256k1_fe_normalize(&pt.y);
+ secp256k1_fe_get_b32(x, &pt.x);
+ y[0] = 0x02 | secp256k1_fe_is_odd(&pt.y);
+
+ secp256k1_sha256_initialize(&sha);
+ secp256k1_sha256_write(&sha, y, sizeof(y));
+ secp256k1_sha256_write(&sha, x, sizeof(x));
+ secp256k1_sha256_finalize(&sha, result);
+ ret = 1;
+ }
+
+ secp256k1_scalar_clear(&s);
+ return ret;
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/ecdh/tests_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/tests_impl.h
new file mode 100644
index 000000000..7badc9033
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/tests_impl.h
@@ -0,0 +1,75 @@
+/**********************************************************************
+ * Copyright (c) 2015 Andrew Poelstra *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_MODULE_ECDH_TESTS_
+#define _SECP256K1_MODULE_ECDH_TESTS_
+
+void test_ecdh_generator_basepoint(void) {
+ unsigned char s_one[32] = { 0 };
+ secp256k1_pubkey point[2];
+ int i;
+
+ s_one[31] = 1;
+ /* Check against pubkey creation when the basepoint is the generator */
+ for (i = 0; i < 100; ++i) {
+ secp256k1_sha256_t sha;
+ unsigned char s_b32[32];
+ unsigned char output_ecdh[32];
+ unsigned char output_ser[32];
+ unsigned char point_ser[33];
+ size_t point_ser_len = sizeof(point_ser);
+ secp256k1_scalar s;
+
+ random_scalar_order(&s);
+ secp256k1_scalar_get_b32(s_b32, &s);
+
+ /* compute using ECDH function */
+ CHECK(secp256k1_ec_pubkey_create(ctx, &point[0], s_one) == 1);
+ CHECK(secp256k1_ecdh(ctx, output_ecdh, &point[0], s_b32) == 1);
+ /* compute "explicitly" */
+ CHECK(secp256k1_ec_pubkey_create(ctx, &point[1], s_b32) == 1);
+ CHECK(secp256k1_ec_pubkey_serialize(ctx, point_ser, &point_ser_len, &point[1], SECP256K1_EC_COMPRESSED) == 1);
+ CHECK(point_ser_len == sizeof(point_ser));
+ secp256k1_sha256_initialize(&sha);
+ secp256k1_sha256_write(&sha, point_ser, point_ser_len);
+ secp256k1_sha256_finalize(&sha, output_ser);
+ /* compare */
+ CHECK(memcmp(output_ecdh, output_ser, sizeof(output_ser)) == 0);
+ }
+}
+
+void test_bad_scalar(void) {
+ unsigned char s_zero[32] = { 0 };
+ unsigned char s_overflow[32] = {
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
+ 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
+ 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41
+ };
+ unsigned char s_rand[32] = { 0 };
+ unsigned char output[32];
+ secp256k1_scalar rand;
+ secp256k1_pubkey point;
+
+ /* Create random point */
+ random_scalar_order(&rand);
+ secp256k1_scalar_get_b32(s_rand, &rand);
+ CHECK(secp256k1_ec_pubkey_create(ctx, &point, s_rand) == 1);
+
+ /* Try to multiply it by bad values */
+ CHECK(secp256k1_ecdh(ctx, output, &point, s_zero) == 0);
+ CHECK(secp256k1_ecdh(ctx, output, &point, s_overflow) == 0);
+ /* ...and a good one */
+ s_overflow[31] -= 1;
+ CHECK(secp256k1_ecdh(ctx, output, &point, s_overflow) == 1);
+}
+
+void run_ecdh_tests(void) {
+ test_ecdh_generator_basepoint();
+ test_bad_scalar();
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/recovery/Makefile.am.include b/crypto/secp256k1/libsecp256k1/src/modules/recovery/Makefile.am.include
new file mode 100644
index 000000000..754469eeb
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/recovery/Makefile.am.include
@@ -0,0 +1,9 @@
+include_HEADERS += include/secp256k1_recovery.h
+noinst_HEADERS += src/modules/recovery/main_impl.h
+noinst_HEADERS += src/modules/recovery/tests_impl.h
+if USE_BENCHMARK
+noinst_PROGRAMS += bench_recover
+bench_recover_SOURCES = src/bench_recover.c
+bench_recover_LDADD = libsecp256k1.la $(SECP_LIBS)
+bench_recover_LDFLAGS = -static
+endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/recovery/main_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/recovery/main_impl.h
new file mode 100644
index 000000000..75b695894
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/recovery/main_impl.h
@@ -0,0 +1,156 @@
+/**********************************************************************
+ * Copyright (c) 2013-2015 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_MODULE_RECOVERY_MAIN_
+#define _SECP256K1_MODULE_RECOVERY_MAIN_
+
+#include "include/secp256k1_recovery.h"
+
+static void secp256k1_ecdsa_recoverable_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, int* recid, const secp256k1_ecdsa_recoverable_signature* sig) {
+ (void)ctx;
+ if (sizeof(secp256k1_scalar) == 32) {
+ /* When the secp256k1_scalar type is exactly 32 byte, use its
+ * representation inside secp256k1_ecdsa_signature, as conversion is very fast.
+ * Note that secp256k1_ecdsa_signature_save must use the same representation. */
+ memcpy(r, &sig->data[0], 32);
+ memcpy(s, &sig->data[32], 32);
+ } else {
+ secp256k1_scalar_set_b32(r, &sig->data[0], NULL);
+ secp256k1_scalar_set_b32(s, &sig->data[32], NULL);
+ }
+ *recid = sig->data[64];
+}
+
+static void secp256k1_ecdsa_recoverable_signature_save(secp256k1_ecdsa_recoverable_signature* sig, const secp256k1_scalar* r, const secp256k1_scalar* s, int recid) {
+ if (sizeof(secp256k1_scalar) == 32) {
+ memcpy(&sig->data[0], r, 32);
+ memcpy(&sig->data[32], s, 32);
+ } else {
+ secp256k1_scalar_get_b32(&sig->data[0], r);
+ secp256k1_scalar_get_b32(&sig->data[32], s);
+ }
+ sig->data[64] = recid;
+}
+
+int secp256k1_ecdsa_recoverable_signature_parse_compact(const secp256k1_context* ctx, secp256k1_ecdsa_recoverable_signature* sig, const unsigned char *input64, int recid) {
+ secp256k1_scalar r, s;
+ int ret = 1;
+ int overflow = 0;
+
+ (void)ctx;
+ ARG_CHECK(sig != NULL);
+ ARG_CHECK(input64 != NULL);
+ ARG_CHECK(recid >= 0 && recid <= 3);
+
+ secp256k1_scalar_set_b32(&r, &input64[0], &overflow);
+ ret &= !overflow;
+ secp256k1_scalar_set_b32(&s, &input64[32], &overflow);
+ ret &= !overflow;
+ if (ret) {
+ secp256k1_ecdsa_recoverable_signature_save(sig, &r, &s, recid);
+ } else {
+ memset(sig, 0, sizeof(*sig));
+ }
+ return ret;
+}
+
+int secp256k1_ecdsa_recoverable_signature_serialize_compact(const secp256k1_context* ctx, unsigned char *output64, int *recid, const secp256k1_ecdsa_recoverable_signature* sig) {
+ secp256k1_scalar r, s;
+
+ (void)ctx;
+ ARG_CHECK(output64 != NULL);
+ ARG_CHECK(sig != NULL);
+
+ secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, recid, sig);
+ secp256k1_scalar_get_b32(&output64[0], &r);
+ secp256k1_scalar_get_b32(&output64[32], &s);
+ return 1;
+}
+
+int secp256k1_ecdsa_recoverable_signature_convert(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const secp256k1_ecdsa_recoverable_signature* sigin) {
+ secp256k1_scalar r, s;
+ int recid;
+
+ (void)ctx;
+ ARG_CHECK(sig != NULL);
+ ARG_CHECK(sigin != NULL);
+
+ secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, sigin);
+ secp256k1_ecdsa_signature_save(sig, &r, &s);
+ return 1;
+}
+
+int secp256k1_ecdsa_sign_recoverable(const secp256k1_context* ctx, secp256k1_ecdsa_recoverable_signature *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) {
+ secp256k1_scalar r, s;
+ secp256k1_scalar sec, non, msg;
+ int recid;
+ int ret = 0;
+ int overflow = 0;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
+ ARG_CHECK(msg32 != NULL);
+ ARG_CHECK(signature != NULL);
+ ARG_CHECK(seckey != NULL);
+ if (noncefp == NULL) {
+ noncefp = secp256k1_nonce_function_default;
+ }
+
+ secp256k1_scalar_set_b32(&sec, seckey, &overflow);
+ /* Fail if the secret key is invalid. */
+ if (!overflow && !secp256k1_scalar_is_zero(&sec)) {
+ unsigned int count = 0;
+ secp256k1_scalar_set_b32(&msg, msg32, NULL);
+ while (1) {
+ unsigned char nonce32[32];
+ ret = noncefp(nonce32, seckey, msg32, NULL, (void*)noncedata, count);
+ if (!ret) {
+ break;
+ }
+ secp256k1_scalar_set_b32(&non, nonce32, &overflow);
+ memset(nonce32, 0, 32);
+ if (!secp256k1_scalar_is_zero(&non) && !overflow) {
+ if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &r, &s, &sec, &msg, &non, &recid)) {
+ break;
+ }
+ }
+ count++;
+ }
+ secp256k1_scalar_clear(&msg);
+ secp256k1_scalar_clear(&non);
+ secp256k1_scalar_clear(&sec);
+ }
+ if (ret) {
+ secp256k1_ecdsa_recoverable_signature_save(signature, &r, &s, recid);
+ } else {
+ memset(signature, 0, sizeof(*signature));
+ }
+ return ret;
+}
+
+int secp256k1_ecdsa_recover(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const secp256k1_ecdsa_recoverable_signature *signature, const unsigned char *msg32) {
+ secp256k1_ge q;
+ secp256k1_scalar r, s;
+ secp256k1_scalar m;
+ int recid;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
+ ARG_CHECK(msg32 != NULL);
+ ARG_CHECK(signature != NULL);
+ ARG_CHECK(pubkey != NULL);
+
+ secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, signature);
+ ARG_CHECK(recid >= 0 && recid < 4);
+ secp256k1_scalar_set_b32(&m, msg32, NULL);
+ if (secp256k1_ecdsa_sig_recover(&ctx->ecmult_ctx, &r, &s, &q, &m, recid)) {
+ secp256k1_pubkey_save(pubkey, &q);
+ return 1;
+ } else {
+ memset(pubkey, 0, sizeof(*pubkey));
+ return 0;
+ }
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/recovery/tests_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/recovery/tests_impl.h
new file mode 100644
index 000000000..5a78fae92
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/recovery/tests_impl.h
@@ -0,0 +1,249 @@
+/**********************************************************************
+ * Copyright (c) 2013-2015 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_MODULE_RECOVERY_TESTS_
+#define _SECP256K1_MODULE_RECOVERY_TESTS_
+
+void test_ecdsa_recovery_end_to_end(void) {
+ unsigned char extra[32] = {0x00};
+ unsigned char privkey[32];
+ unsigned char message[32];
+ secp256k1_ecdsa_signature signature[5];
+ secp256k1_ecdsa_recoverable_signature rsignature[5];
+ unsigned char sig[74];
+ secp256k1_pubkey pubkey;
+ secp256k1_pubkey recpubkey;
+ int recid = 0;
+
+ /* Generate a random key and message. */
+ {
+ secp256k1_scalar msg, key;
+ random_scalar_order_test(&msg);
+ random_scalar_order_test(&key);
+ secp256k1_scalar_get_b32(privkey, &key);
+ secp256k1_scalar_get_b32(message, &msg);
+ }
+
+ /* Construct and verify corresponding public key. */
+ CHECK(secp256k1_ec_seckey_verify(ctx, privkey) == 1);
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, privkey) == 1);
+
+ /* Serialize/parse compact and verify/recover. */
+ extra[0] = 0;
+ CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[0], message, privkey, NULL, NULL) == 1);
+ CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[4], message, privkey, NULL, NULL) == 1);
+ CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[1], message, privkey, NULL, extra) == 1);
+ extra[31] = 1;
+ CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[2], message, privkey, NULL, extra) == 1);
+ extra[31] = 0;
+ extra[0] = 1;
+ CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[3], message, privkey, NULL, extra) == 1);
+ CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, sig, &recid, &rsignature[4]) == 1);
+ CHECK(secp256k1_ecdsa_recoverable_signature_convert(ctx, &signature[4], &rsignature[4]) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &signature[4], message, &pubkey) == 1);
+ memset(&rsignature[4], 0, sizeof(rsignature[4]));
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1);
+ CHECK(secp256k1_ecdsa_recoverable_signature_convert(ctx, &signature[4], &rsignature[4]) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &signature[4], message, &pubkey) == 1);
+ /* Parse compact (with recovery id) and recover. */
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1);
+ CHECK(secp256k1_ecdsa_recover(ctx, &recpubkey, &rsignature[4], message) == 1);
+ CHECK(memcmp(&pubkey, &recpubkey, sizeof(pubkey)) == 0);
+ /* Serialize/destroy/parse signature and verify again. */
+ CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, sig, &recid, &rsignature[4]) == 1);
+ sig[secp256k1_rand32() % 64] += 1 + (secp256k1_rand32() % 255);
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1);
+ CHECK(secp256k1_ecdsa_recoverable_signature_convert(ctx, &signature[4], &rsignature[4]) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &signature[4], message, &pubkey) == 0);
+ /* Recover again */
+ CHECK(secp256k1_ecdsa_recover(ctx, &recpubkey, &rsignature[4], message) == 0 ||
+ memcmp(&pubkey, &recpubkey, sizeof(pubkey)) != 0);
+}
+
+/* Tests several edge cases. */
+void test_ecdsa_recovery_edge_cases(void) {
+ const unsigned char msg32[32] = {
+ 'T', 'h', 'i', 's', ' ', 'i', 's', ' ',
+ 'a', ' ', 'v', 'e', 'r', 'y', ' ', 's',
+ 'e', 'c', 'r', 'e', 't', ' ', 'm', 'e',
+ 's', 's', 'a', 'g', 'e', '.', '.', '.'
+ };
+ const unsigned char sig64[64] = {
+ /* Generated by signing the above message with nonce 'This is the nonce we will use...'
+ * and secret key 0 (which is not valid), resulting in recid 0. */
+ 0x67, 0xCB, 0x28, 0x5F, 0x9C, 0xD1, 0x94, 0xE8,
+ 0x40, 0xD6, 0x29, 0x39, 0x7A, 0xF5, 0x56, 0x96,
+ 0x62, 0xFD, 0xE4, 0x46, 0x49, 0x99, 0x59, 0x63,
+ 0x17, 0x9A, 0x7D, 0xD1, 0x7B, 0xD2, 0x35, 0x32,
+ 0x4B, 0x1B, 0x7D, 0xF3, 0x4C, 0xE1, 0xF6, 0x8E,
+ 0x69, 0x4F, 0xF6, 0xF1, 0x1A, 0xC7, 0x51, 0xDD,
+ 0x7D, 0xD7, 0x3E, 0x38, 0x7E, 0xE4, 0xFC, 0x86,
+ 0x6E, 0x1B, 0xE8, 0xEC, 0xC7, 0xDD, 0x95, 0x57
+ };
+ secp256k1_pubkey pubkey;
+ /* signature (r,s) = (4,4), which can be recovered with all 4 recids. */
+ const unsigned char sigb64[64] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
+ };
+ secp256k1_pubkey pubkeyb;
+ secp256k1_ecdsa_recoverable_signature rsig;
+ secp256k1_ecdsa_signature sig;
+ int recid;
+
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sig64, 0));
+ CHECK(!secp256k1_ecdsa_recover(ctx, &pubkey, &rsig, msg32));
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sig64, 1));
+ CHECK(secp256k1_ecdsa_recover(ctx, &pubkey, &rsig, msg32));
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sig64, 2));
+ CHECK(!secp256k1_ecdsa_recover(ctx, &pubkey, &rsig, msg32));
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sig64, 3));
+ CHECK(!secp256k1_ecdsa_recover(ctx, &pubkey, &rsig, msg32));
+
+ for (recid = 0; recid < 4; recid++) {
+ int i;
+ int recid2;
+ /* (4,4) encoded in DER. */
+ unsigned char sigbder[8] = {0x30, 0x06, 0x02, 0x01, 0x04, 0x02, 0x01, 0x04};
+ unsigned char sigcder_zr[7] = {0x30, 0x05, 0x02, 0x00, 0x02, 0x01, 0x01};
+ unsigned char sigcder_zs[7] = {0x30, 0x05, 0x02, 0x01, 0x01, 0x02, 0x00};
+ unsigned char sigbderalt1[39] = {
+ 0x30, 0x25, 0x02, 0x20, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x04, 0x02, 0x01, 0x04,
+ };
+ unsigned char sigbderalt2[39] = {
+ 0x30, 0x25, 0x02, 0x01, 0x04, 0x02, 0x20, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
+ };
+ unsigned char sigbderalt3[40] = {
+ 0x30, 0x26, 0x02, 0x21, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x04, 0x02, 0x01, 0x04,
+ };
+ unsigned char sigbderalt4[40] = {
+ 0x30, 0x26, 0x02, 0x01, 0x04, 0x02, 0x21, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
+ };
+ /* (order + r,4) encoded in DER. */
+ unsigned char sigbderlong[40] = {
+ 0x30, 0x26, 0x02, 0x21, 0x00, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC,
+ 0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E,
+ 0x8C, 0xD0, 0x36, 0x41, 0x45, 0x02, 0x01, 0x04
+ };
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigb64, recid) == 1);
+ CHECK(secp256k1_ecdsa_recover(ctx, &pubkeyb, &rsig, msg32) == 1);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1);
+ for (recid2 = 0; recid2 < 4; recid2++) {
+ secp256k1_pubkey pubkey2b;
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigb64, recid2) == 1);
+ CHECK(secp256k1_ecdsa_recover(ctx, &pubkey2b, &rsig, msg32) == 1);
+ /* Verifying with (order + r,4) should always fail. */
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderlong, sizeof(sigbderlong)) == 0);
+ }
+ /* DER parsing tests. */
+ /* Zero length r/s. */
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder_zr, sizeof(sigcder_zr)) == 0);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder_zs, sizeof(sigcder_zs)) == 0);
+ /* Leading zeros. */
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt1, sizeof(sigbderalt1)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt2, sizeof(sigbderalt2)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt3, sizeof(sigbderalt3)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt4, sizeof(sigbderalt4)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1);
+ sigbderalt3[4] = 1;
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt3, sizeof(sigbderalt3)) == 0);
+ sigbderalt4[7] = 1;
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt4, sizeof(sigbderalt4)) == 0);
+ /* Damage signature. */
+ sigbder[7]++;
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 0);
+ sigbder[7]--;
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, 6) == 0);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder) - 1) == 0);
+ for(i = 0; i < 8; i++) {
+ int c;
+ unsigned char orig = sigbder[i];
+ /*Try every single-byte change.*/
+ for (c = 0; c < 256; c++) {
+ if (c == orig ) {
+ continue;
+ }
+ sigbder[i] = c;
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder)) == 0 || secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 0);
+ }
+ sigbder[i] = orig;
+ }
+ }
+
+ /* Test r/s equal to zero */
+ {
+ /* (1,1) encoded in DER. */
+ unsigned char sigcder[8] = {0x30, 0x06, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01};
+ unsigned char sigc64[64] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
+ };
+ secp256k1_pubkey pubkeyc;
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigc64, 0) == 1);
+ CHECK(secp256k1_ecdsa_recover(ctx, &pubkeyc, &rsig, msg32) == 1);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder, sizeof(sigcder)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyc) == 1);
+ sigcder[4] = 0;
+ sigc64[31] = 0;
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigc64, 0) == 1);
+ CHECK(secp256k1_ecdsa_recover(ctx, &pubkeyb, &rsig, msg32) == 0);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder, sizeof(sigcder)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyc) == 0);
+ sigcder[4] = 1;
+ sigcder[7] = 0;
+ sigc64[31] = 1;
+ sigc64[63] = 0;
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigc64, 0) == 1);
+ CHECK(secp256k1_ecdsa_recover(ctx, &pubkeyb, &rsig, msg32) == 0);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder, sizeof(sigcder)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyc) == 0);
+ }
+}
+
+void run_recovery_tests(void) {
+ int i;
+ for (i = 0; i < 64*count; i++) {
+ test_ecdsa_recovery_end_to_end();
+ }
+ test_ecdsa_recovery_edge_cases();
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/Makefile.am.include b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/Makefile.am.include
new file mode 100644
index 000000000..bad4cb7c5
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/Makefile.am.include
@@ -0,0 +1,11 @@
+include_HEADERS += include/secp256k1_schnorr.h
+noinst_HEADERS += src/modules/schnorr/main_impl.h
+noinst_HEADERS += src/modules/schnorr/schnorr.h
+noinst_HEADERS += src/modules/schnorr/schnorr_impl.h
+noinst_HEADERS += src/modules/schnorr/tests_impl.h
+if USE_BENCHMARK
+noinst_PROGRAMS += bench_schnorr_verify
+bench_schnorr_verify_SOURCES = src/bench_schnorr_verify.c
+bench_schnorr_verify_LDADD = libsecp256k1.la $(SECP_LIBS)
+bench_schnorr_verify_LDFLAGS = -static
+endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/main_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/main_impl.h
new file mode 100644
index 000000000..c10fd259f
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/main_impl.h
@@ -0,0 +1,164 @@
+/**********************************************************************
+ * Copyright (c) 2014-2015 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef SECP256K1_MODULE_SCHNORR_MAIN
+#define SECP256K1_MODULE_SCHNORR_MAIN
+
+#include "include/secp256k1_schnorr.h"
+#include "modules/schnorr/schnorr_impl.h"
+
+static void secp256k1_schnorr_msghash_sha256(unsigned char *h32, const unsigned char *r32, const unsigned char *msg32) {
+ secp256k1_sha256_t sha;
+ secp256k1_sha256_initialize(&sha);
+ secp256k1_sha256_write(&sha, r32, 32);
+ secp256k1_sha256_write(&sha, msg32, 32);
+ secp256k1_sha256_finalize(&sha, h32);
+}
+
+static const unsigned char secp256k1_schnorr_algo16[17] = "Schnorr+SHA256 ";
+
+int secp256k1_schnorr_sign(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) {
+ secp256k1_scalar sec, non;
+ int ret = 0;
+ int overflow = 0;
+ unsigned int count = 0;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
+ ARG_CHECK(msg32 != NULL);
+ ARG_CHECK(sig64 != NULL);
+ ARG_CHECK(seckey != NULL);
+ if (noncefp == NULL) {
+ noncefp = secp256k1_nonce_function_default;
+ }
+
+ secp256k1_scalar_set_b32(&sec, seckey, NULL);
+ while (1) {
+ unsigned char nonce32[32];
+ ret = noncefp(nonce32, msg32, seckey, secp256k1_schnorr_algo16, (void*)noncedata, count);
+ if (!ret) {
+ break;
+ }
+ secp256k1_scalar_set_b32(&non, nonce32, &overflow);
+ memset(nonce32, 0, 32);
+ if (!secp256k1_scalar_is_zero(&non) && !overflow) {
+ if (secp256k1_schnorr_sig_sign(&ctx->ecmult_gen_ctx, sig64, &sec, &non, NULL, secp256k1_schnorr_msghash_sha256, msg32)) {
+ break;
+ }
+ }
+ count++;
+ }
+ if (!ret) {
+ memset(sig64, 0, 64);
+ }
+ secp256k1_scalar_clear(&non);
+ secp256k1_scalar_clear(&sec);
+ return ret;
+}
+
+int secp256k1_schnorr_verify(const secp256k1_context* ctx, const unsigned char *sig64, const unsigned char *msg32, const secp256k1_pubkey *pubkey) {
+ secp256k1_ge q;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
+ ARG_CHECK(msg32 != NULL);
+ ARG_CHECK(sig64 != NULL);
+ ARG_CHECK(pubkey != NULL);
+
+ secp256k1_pubkey_load(ctx, &q, pubkey);
+ return secp256k1_schnorr_sig_verify(&ctx->ecmult_ctx, sig64, &q, secp256k1_schnorr_msghash_sha256, msg32);
+}
+
+int secp256k1_schnorr_recover(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *sig64, const unsigned char *msg32) {
+ secp256k1_ge q;
+
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
+ ARG_CHECK(msg32 != NULL);
+ ARG_CHECK(sig64 != NULL);
+ ARG_CHECK(pubkey != NULL);
+
+ if (secp256k1_schnorr_sig_recover(&ctx->ecmult_ctx, sig64, &q, secp256k1_schnorr_msghash_sha256, msg32)) {
+ secp256k1_pubkey_save(pubkey, &q);
+ return 1;
+ } else {
+ memset(pubkey, 0, sizeof(*pubkey));
+ return 0;
+ }
+}
+
+int secp256k1_schnorr_generate_nonce_pair(const secp256k1_context* ctx, secp256k1_pubkey *pubnonce, unsigned char *privnonce32, const unsigned char *sec32, const unsigned char *msg32, secp256k1_nonce_function noncefp, const void* noncedata) {
+ int count = 0;
+ int ret = 1;
+ secp256k1_gej Qj;
+ secp256k1_ge Q;
+ secp256k1_scalar sec;
+
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
+ ARG_CHECK(msg32 != NULL);
+ ARG_CHECK(sec32 != NULL);
+ ARG_CHECK(pubnonce != NULL);
+ ARG_CHECK(privnonce32 != NULL);
+
+ if (noncefp == NULL) {
+ noncefp = secp256k1_nonce_function_default;
+ }
+
+ do {
+ int overflow;
+ ret = noncefp(privnonce32, sec32, msg32, secp256k1_schnorr_algo16, (void*)noncedata, count++);
+ if (!ret) {
+ break;
+ }
+ secp256k1_scalar_set_b32(&sec, privnonce32, &overflow);
+ if (overflow || secp256k1_scalar_is_zero(&sec)) {
+ continue;
+ }
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &Qj, &sec);
+ secp256k1_ge_set_gej(&Q, &Qj);
+
+ secp256k1_pubkey_save(pubnonce, &Q);
+ break;
+ } while(1);
+
+ secp256k1_scalar_clear(&sec);
+ if (!ret) {
+ memset(pubnonce, 0, sizeof(*pubnonce));
+ }
+ return ret;
+}
+
+int secp256k1_schnorr_partial_sign(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const unsigned char *sec32, const secp256k1_pubkey *pubnonce_others, const unsigned char *secnonce32) {
+ int overflow = 0;
+ secp256k1_scalar sec, non;
+ secp256k1_ge pubnon;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
+ ARG_CHECK(msg32 != NULL);
+ ARG_CHECK(sig64 != NULL);
+ ARG_CHECK(sec32 != NULL);
+ ARG_CHECK(secnonce32 != NULL);
+ ARG_CHECK(pubnonce_others != NULL);
+
+ secp256k1_scalar_set_b32(&sec, sec32, &overflow);
+ if (overflow || secp256k1_scalar_is_zero(&sec)) {
+ return -1;
+ }
+ secp256k1_scalar_set_b32(&non, secnonce32, &overflow);
+ if (overflow || secp256k1_scalar_is_zero(&non)) {
+ return -1;
+ }
+ secp256k1_pubkey_load(ctx, &pubnon, pubnonce_others);
+ return secp256k1_schnorr_sig_sign(&ctx->ecmult_gen_ctx, sig64, &sec, &non, &pubnon, secp256k1_schnorr_msghash_sha256, msg32);
+}
+
+int secp256k1_schnorr_partial_combine(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char * const *sig64sin, int n) {
+ ARG_CHECK(sig64 != NULL);
+ ARG_CHECK(n >= 1);
+ ARG_CHECK(sig64sin != NULL);
+ return secp256k1_schnorr_sig_combine(sig64, n, sig64sin);
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr.h b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr.h
new file mode 100644
index 000000000..d227433d4
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr.h
@@ -0,0 +1,20 @@
+/***********************************************************************
+ * Copyright (c) 2014-2015 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php. *
+ ***********************************************************************/
+
+#ifndef _SECP256K1_MODULE_SCHNORR_H_
+#define _SECP256K1_MODULE_SCHNORR_H_
+
+#include "scalar.h"
+#include "group.h"
+
+typedef void (*secp256k1_schnorr_msghash)(unsigned char *h32, const unsigned char *r32, const unsigned char *msg32);
+
+static int secp256k1_schnorr_sig_sign(const secp256k1_ecmult_gen_context* ctx, unsigned char *sig64, const secp256k1_scalar *key, const secp256k1_scalar *nonce, const secp256k1_ge *pubnonce, secp256k1_schnorr_msghash hash, const unsigned char *msg32);
+static int secp256k1_schnorr_sig_verify(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, const secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32);
+static int secp256k1_schnorr_sig_recover(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32);
+static int secp256k1_schnorr_sig_combine(unsigned char *sig64, int n, const unsigned char * const *sig64ins);
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr_impl.h
new file mode 100644
index 000000000..ed70390bb
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr_impl.h
@@ -0,0 +1,207 @@
+/***********************************************************************
+ * Copyright (c) 2014-2015 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php. *
+ ***********************************************************************/
+
+#ifndef _SECP256K1_SCHNORR_IMPL_H_
+#define _SECP256K1_SCHNORR_IMPL_H_
+
+#include <string.h>
+
+#include "schnorr.h"
+#include "num.h"
+#include "field.h"
+#include "group.h"
+#include "ecmult.h"
+#include "ecmult_gen.h"
+
+/**
+ * Custom Schnorr-based signature scheme. They support multiparty signing, public key
+ * recovery and batch validation.
+ *
+ * Rationale for verifying R's y coordinate:
+ * In order to support batch validation and public key recovery, the full R point must
+ * be known to verifiers, rather than just its x coordinate. In order to not risk
+ * being more strict in batch validation than normal validation, validators must be
+ * required to reject signatures with incorrect y coordinate. This is only possible
+ * by including a (relatively slow) field inverse, or a field square root. However,
+ * batch validation offers potentially much higher benefits than this cost.
+ *
+ * Rationale for having an implicit y coordinate oddness:
+ * If we commit to having the full R point known to verifiers, there are two mechanism.
+ * Either include its oddness in the signature, or give it an implicit fixed value.
+ * As the R y coordinate can be flipped by a simple negation of the nonce, we choose the
+ * latter, as it comes with nearly zero impact on signing or validation performance, and
+ * saves a byte in the signature.
+ *
+ * Signing:
+ * Inputs: 32-byte message m, 32-byte scalar key x (!=0), 32-byte scalar nonce k (!=0)
+ *
+ * Compute point R = k * G. Reject nonce if R's y coordinate is odd (or negate nonce).
+ * Compute 32-byte r, the serialization of R's x coordinate.
+ * Compute scalar h = Hash(r || m). Reject nonce if h == 0 or h >= order.
+ * Compute scalar s = k - h * x.
+ * The signature is (r, s).
+ *
+ *
+ * Verification:
+ * Inputs: 32-byte message m, public key point Q, signature: (32-byte r, scalar s)
+ *
+ * Signature is invalid if s >= order.
+ * Signature is invalid if r >= p.
+ * Compute scalar h = Hash(r || m). Signature is invalid if h == 0 or h >= order.
+ * Option 1 (faster for single verification):
+ * Compute point R = h * Q + s * G. Signature is invalid if R is infinity or R's y coordinate is odd.
+ * Signature is valid if the serialization of R's x coordinate equals r.
+ * Option 2 (allows batch validation and pubkey recovery):
+ * Decompress x coordinate r into point R, with odd y coordinate. Fail if R is not on the curve.
+ * Signature is valid if R + h * Q + s * G == 0.
+ */
+
+static int secp256k1_schnorr_sig_sign(const secp256k1_ecmult_gen_context* ctx, unsigned char *sig64, const secp256k1_scalar *key, const secp256k1_scalar *nonce, const secp256k1_ge *pubnonce, secp256k1_schnorr_msghash hash, const unsigned char *msg32) {
+ secp256k1_gej Rj;
+ secp256k1_ge Ra;
+ unsigned char h32[32];
+ secp256k1_scalar h, s;
+ int overflow;
+ secp256k1_scalar n;
+
+ if (secp256k1_scalar_is_zero(key) || secp256k1_scalar_is_zero(nonce)) {
+ return 0;
+ }
+ n = *nonce;
+
+ secp256k1_ecmult_gen(ctx, &Rj, &n);
+ if (pubnonce != NULL) {
+ secp256k1_gej_add_ge(&Rj, &Rj, pubnonce);
+ }
+ secp256k1_ge_set_gej(&Ra, &Rj);
+ secp256k1_fe_normalize(&Ra.y);
+ if (secp256k1_fe_is_odd(&Ra.y)) {
+ /* R's y coordinate is odd, which is not allowed (see rationale above).
+ Force it to be even by negating the nonce. Note that this even works
+ for multiparty signing, as the R point is known to all participants,
+ which can all decide to flip the sign in unison, resulting in the
+ overall R point to be negated too. */
+ secp256k1_scalar_negate(&n, &n);
+ }
+ secp256k1_fe_normalize(&Ra.x);
+ secp256k1_fe_get_b32(sig64, &Ra.x);
+ hash(h32, sig64, msg32);
+ overflow = 0;
+ secp256k1_scalar_set_b32(&h, h32, &overflow);
+ if (overflow || secp256k1_scalar_is_zero(&h)) {
+ secp256k1_scalar_clear(&n);
+ return 0;
+ }
+ secp256k1_scalar_mul(&s, &h, key);
+ secp256k1_scalar_negate(&s, &s);
+ secp256k1_scalar_add(&s, &s, &n);
+ secp256k1_scalar_clear(&n);
+ secp256k1_scalar_get_b32(sig64 + 32, &s);
+ return 1;
+}
+
+static int secp256k1_schnorr_sig_verify(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, const secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32) {
+ secp256k1_gej Qj, Rj;
+ secp256k1_ge Ra;
+ secp256k1_fe Rx;
+ secp256k1_scalar h, s;
+ unsigned char hh[32];
+ int overflow;
+
+ if (secp256k1_ge_is_infinity(pubkey)) {
+ return 0;
+ }
+ hash(hh, sig64, msg32);
+ overflow = 0;
+ secp256k1_scalar_set_b32(&h, hh, &overflow);
+ if (overflow || secp256k1_scalar_is_zero(&h)) {
+ return 0;
+ }
+ overflow = 0;
+ secp256k1_scalar_set_b32(&s, sig64 + 32, &overflow);
+ if (overflow) {
+ return 0;
+ }
+ if (!secp256k1_fe_set_b32(&Rx, sig64)) {
+ return 0;
+ }
+ secp256k1_gej_set_ge(&Qj, pubkey);
+ secp256k1_ecmult(ctx, &Rj, &Qj, &h, &s);
+ if (secp256k1_gej_is_infinity(&Rj)) {
+ return 0;
+ }
+ secp256k1_ge_set_gej_var(&Ra, &Rj);
+ secp256k1_fe_normalize_var(&Ra.y);
+ if (secp256k1_fe_is_odd(&Ra.y)) {
+ return 0;
+ }
+ return secp256k1_fe_equal_var(&Rx, &Ra.x);
+}
+
+static int secp256k1_schnorr_sig_recover(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32) {
+ secp256k1_gej Qj, Rj;
+ secp256k1_ge Ra;
+ secp256k1_fe Rx;
+ secp256k1_scalar h, s;
+ unsigned char hh[32];
+ int overflow;
+
+ hash(hh, sig64, msg32);
+ overflow = 0;
+ secp256k1_scalar_set_b32(&h, hh, &overflow);
+ if (overflow || secp256k1_scalar_is_zero(&h)) {
+ return 0;
+ }
+ overflow = 0;
+ secp256k1_scalar_set_b32(&s, sig64 + 32, &overflow);
+ if (overflow) {
+ return 0;
+ }
+ if (!secp256k1_fe_set_b32(&Rx, sig64)) {
+ return 0;
+ }
+ if (!secp256k1_ge_set_xo_var(&Ra, &Rx, 0)) {
+ return 0;
+ }
+ secp256k1_gej_set_ge(&Rj, &Ra);
+ secp256k1_scalar_inverse_var(&h, &h);
+ secp256k1_scalar_negate(&s, &s);
+ secp256k1_scalar_mul(&s, &s, &h);
+ secp256k1_ecmult(ctx, &Qj, &Rj, &h, &s);
+ if (secp256k1_gej_is_infinity(&Qj)) {
+ return 0;
+ }
+ secp256k1_ge_set_gej(pubkey, &Qj);
+ return 1;
+}
+
+static int secp256k1_schnorr_sig_combine(unsigned char *sig64, int n, const unsigned char * const *sig64ins) {
+ secp256k1_scalar s = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
+ int i;
+ for (i = 0; i < n; i++) {
+ secp256k1_scalar si;
+ int overflow;
+ secp256k1_scalar_set_b32(&si, sig64ins[i] + 32, &overflow);
+ if (overflow) {
+ return -1;
+ }
+ if (i) {
+ if (memcmp(sig64ins[i - 1], sig64ins[i], 32) != 0) {
+ return -1;
+ }
+ }
+ secp256k1_scalar_add(&s, &s, &si);
+ }
+ if (secp256k1_scalar_is_zero(&s)) {
+ return 0;
+ }
+ memcpy(sig64, sig64ins[0], 32);
+ secp256k1_scalar_get_b32(sig64 + 32, &s);
+ secp256k1_scalar_clear(&s);
+ return 1;
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/tests_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/tests_impl.h
new file mode 100644
index 000000000..79737f748
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/tests_impl.h
@@ -0,0 +1,175 @@
+/**********************************************************************
+ * Copyright (c) 2014-2015 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef SECP256K1_MODULE_SCHNORR_TESTS
+#define SECP256K1_MODULE_SCHNORR_TESTS
+
+#include "include/secp256k1_schnorr.h"
+
+void test_schnorr_end_to_end(void) {
+ unsigned char privkey[32];
+ unsigned char message[32];
+ unsigned char schnorr_signature[64];
+ secp256k1_pubkey pubkey, recpubkey;
+
+ /* Generate a random key and message. */
+ {
+ secp256k1_scalar key;
+ random_scalar_order_test(&key);
+ secp256k1_scalar_get_b32(privkey, &key);
+ secp256k1_rand256_test(message);
+ }
+
+ /* Construct and verify corresponding public key. */
+ CHECK(secp256k1_ec_seckey_verify(ctx, privkey) == 1);
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, privkey) == 1);
+
+ /* Schnorr sign. */
+ CHECK(secp256k1_schnorr_sign(ctx, schnorr_signature, message, privkey, NULL, NULL) == 1);
+ CHECK(secp256k1_schnorr_verify(ctx, schnorr_signature, message, &pubkey) == 1);
+ CHECK(secp256k1_schnorr_recover(ctx, &recpubkey, schnorr_signature, message) == 1);
+ CHECK(memcmp(&pubkey, &recpubkey, sizeof(pubkey)) == 0);
+ /* Destroy signature and verify again. */
+ schnorr_signature[secp256k1_rand32() % 64] += 1 + (secp256k1_rand32() % 255);
+ CHECK(secp256k1_schnorr_verify(ctx, schnorr_signature, message, &pubkey) == 0);
+ CHECK(secp256k1_schnorr_recover(ctx, &recpubkey, schnorr_signature, message) != 1 ||
+ memcmp(&pubkey, &recpubkey, sizeof(pubkey)) != 0);
+}
+
+/** Horribly broken hash function. Do not use for anything but tests. */
+void test_schnorr_hash(unsigned char *h32, const unsigned char *r32, const unsigned char *msg32) {
+ int i;
+ for (i = 0; i < 32; i++) {
+ h32[i] = r32[i] ^ msg32[i];
+ }
+}
+
+void test_schnorr_sign_verify(void) {
+ unsigned char msg32[32];
+ unsigned char sig64[3][64];
+ secp256k1_gej pubkeyj[3];
+ secp256k1_ge pubkey[3];
+ secp256k1_scalar nonce[3], key[3];
+ int i = 0;
+ int k;
+
+ secp256k1_rand256_test(msg32);
+
+ for (k = 0; k < 3; k++) {
+ random_scalar_order_test(&key[k]);
+
+ do {
+ random_scalar_order_test(&nonce[k]);
+ if (secp256k1_schnorr_sig_sign(&ctx->ecmult_gen_ctx, sig64[k], &key[k], &nonce[k], NULL, &test_schnorr_hash, msg32)) {
+ break;
+ }
+ } while(1);
+
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pubkeyj[k], &key[k]);
+ secp256k1_ge_set_gej_var(&pubkey[k], &pubkeyj[k]);
+ CHECK(secp256k1_schnorr_sig_verify(&ctx->ecmult_ctx, sig64[k], &pubkey[k], &test_schnorr_hash, msg32));
+
+ for (i = 0; i < 4; i++) {
+ int pos = secp256k1_rand32() % 64;
+ int mod = 1 + (secp256k1_rand32() % 255);
+ sig64[k][pos] ^= mod;
+ CHECK(secp256k1_schnorr_sig_verify(&ctx->ecmult_ctx, sig64[k], &pubkey[k], &test_schnorr_hash, msg32) == 0);
+ sig64[k][pos] ^= mod;
+ }
+ }
+}
+
+void test_schnorr_threshold(void) {
+ unsigned char msg[32];
+ unsigned char sec[5][32];
+ secp256k1_pubkey pub[5];
+ unsigned char nonce[5][32];
+ secp256k1_pubkey pubnonce[5];
+ unsigned char sig[5][64];
+ const unsigned char* sigs[5];
+ unsigned char allsig[64];
+ const secp256k1_pubkey* pubs[5];
+ secp256k1_pubkey allpub;
+ int n, i;
+ int damage;
+ int ret = 0;
+
+ damage = (secp256k1_rand32() % 2) ? (1 + (secp256k1_rand32() % 4)) : 0;
+ secp256k1_rand256_test(msg);
+ n = 2 + (secp256k1_rand32() % 4);
+ for (i = 0; i < n; i++) {
+ do {
+ secp256k1_rand256_test(sec[i]);
+ } while (!secp256k1_ec_seckey_verify(ctx, sec[i]));
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pub[i], sec[i]));
+ CHECK(secp256k1_schnorr_generate_nonce_pair(ctx, &pubnonce[i], nonce[i], msg, sec[i], NULL, NULL));
+ pubs[i] = &pub[i];
+ }
+ if (damage == 1) {
+ nonce[secp256k1_rand32() % n][secp256k1_rand32() % 32] ^= 1 + (secp256k1_rand32() % 255);
+ } else if (damage == 2) {
+ sec[secp256k1_rand32() % n][secp256k1_rand32() % 32] ^= 1 + (secp256k1_rand32() % 255);
+ }
+ for (i = 0; i < n; i++) {
+ secp256k1_pubkey allpubnonce;
+ const secp256k1_pubkey *pubnonces[4];
+ int j;
+ for (j = 0; j < i; j++) {
+ pubnonces[j] = &pubnonce[j];
+ }
+ for (j = i + 1; j < n; j++) {
+ pubnonces[j - 1] = &pubnonce[j];
+ }
+ CHECK(secp256k1_ec_pubkey_combine(ctx, &allpubnonce, pubnonces, n - 1));
+ ret |= (secp256k1_schnorr_partial_sign(ctx, sig[i], msg, sec[i], &allpubnonce, nonce[i]) != 1) * 1;
+ sigs[i] = sig[i];
+ }
+ if (damage == 3) {
+ sig[secp256k1_rand32() % n][secp256k1_rand32() % 64] ^= 1 + (secp256k1_rand32() % 255);
+ }
+ ret |= (secp256k1_ec_pubkey_combine(ctx, &allpub, pubs, n) != 1) * 2;
+ if ((ret & 1) == 0) {
+ ret |= (secp256k1_schnorr_partial_combine(ctx, allsig, sigs, n) != 1) * 4;
+ }
+ if (damage == 4) {
+ allsig[secp256k1_rand32() % 32] ^= 1 + (secp256k1_rand32() % 255);
+ }
+ if ((ret & 7) == 0) {
+ ret |= (secp256k1_schnorr_verify(ctx, allsig, msg, &allpub) != 1) * 8;
+ }
+ CHECK((ret == 0) == (damage == 0));
+}
+
+void test_schnorr_recovery(void) {
+ unsigned char msg32[32];
+ unsigned char sig64[64];
+ secp256k1_ge Q;
+
+ secp256k1_rand256_test(msg32);
+ secp256k1_rand256_test(sig64);
+ secp256k1_rand256_test(sig64 + 32);
+ if (secp256k1_schnorr_sig_recover(&ctx->ecmult_ctx, sig64, &Q, &test_schnorr_hash, msg32) == 1) {
+ CHECK(secp256k1_schnorr_sig_verify(&ctx->ecmult_ctx, sig64, &Q, &test_schnorr_hash, msg32) == 1);
+ }
+}
+
+void run_schnorr_tests(void) {
+ int i;
+ for (i = 0; i < 32*count; i++) {
+ test_schnorr_end_to_end();
+ }
+ for (i = 0; i < 32 * count; i++) {
+ test_schnorr_sign_verify();
+ }
+ for (i = 0; i < 16 * count; i++) {
+ test_schnorr_recovery();
+ }
+ for (i = 0; i < 10 * count; i++) {
+ test_schnorr_threshold();
+ }
+}
+
+#endif
diff --git a/crypto/secp256k1/secp256k1/src/num.h b/crypto/secp256k1/libsecp256k1/src/num.h
index 339b6bb6e..ebfa71eb4 100644
--- a/crypto/secp256k1/secp256k1/src/num.h
+++ b/crypto/secp256k1/libsecp256k1/src/num.h
@@ -20,48 +20,48 @@
#endif
/** Copy a number. */
-static void secp256k1_num_copy(secp256k1_num_t *r, const secp256k1_num_t *a);
+static void secp256k1_num_copy(secp256k1_num *r, const secp256k1_num *a);
/** Convert a number's absolute value to a binary big-endian string.
* There must be enough place. */
-static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num_t *a);
+static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num *a);
/** Set a number to the value of a binary big-endian string. */
-static void secp256k1_num_set_bin(secp256k1_num_t *r, const unsigned char *a, unsigned int alen);
+static void secp256k1_num_set_bin(secp256k1_num *r, const unsigned char *a, unsigned int alen);
/** Compute a modular inverse. The input must be less than the modulus. */
-static void secp256k1_num_mod_inverse(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *m);
+static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *m);
/** Compare the absolute value of two numbers. */
-static int secp256k1_num_cmp(const secp256k1_num_t *a, const secp256k1_num_t *b);
+static int secp256k1_num_cmp(const secp256k1_num *a, const secp256k1_num *b);
/** Test whether two number are equal (including sign). */
-static int secp256k1_num_eq(const secp256k1_num_t *a, const secp256k1_num_t *b);
+static int secp256k1_num_eq(const secp256k1_num *a, const secp256k1_num *b);
/** Add two (signed) numbers. */
-static void secp256k1_num_add(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b);
+static void secp256k1_num_add(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b);
/** Subtract two (signed) numbers. */
-static void secp256k1_num_sub(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b);
+static void secp256k1_num_sub(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b);
/** Multiply two (signed) numbers. */
-static void secp256k1_num_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b);
+static void secp256k1_num_mul(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b);
/** Replace a number by its remainder modulo m. M's sign is ignored. The result is a number between 0 and m-1,
even if r was negative. */
-static void secp256k1_num_mod(secp256k1_num_t *r, const secp256k1_num_t *m);
+static void secp256k1_num_mod(secp256k1_num *r, const secp256k1_num *m);
/** Right-shift the passed number by bits bits. */
-static void secp256k1_num_shift(secp256k1_num_t *r, int bits);
+static void secp256k1_num_shift(secp256k1_num *r, int bits);
/** Check whether a number is zero. */
-static int secp256k1_num_is_zero(const secp256k1_num_t *a);
+static int secp256k1_num_is_zero(const secp256k1_num *a);
/** Check whether a number is strictly negative. */
-static int secp256k1_num_is_neg(const secp256k1_num_t *a);
+static int secp256k1_num_is_neg(const secp256k1_num *a);
/** Change a number's sign. */
-static void secp256k1_num_negate(secp256k1_num_t *r);
+static void secp256k1_num_negate(secp256k1_num *r);
#endif
diff --git a/crypto/secp256k1/secp256k1/src/num_gmp.h b/crypto/secp256k1/libsecp256k1/src/num_gmp.h
index baa1f2bf2..7dd813088 100644
--- a/crypto/secp256k1/secp256k1/src/num_gmp.h
+++ b/crypto/secp256k1/libsecp256k1/src/num_gmp.h
@@ -15,6 +15,6 @@ typedef struct {
mp_limb_t data[2*NUM_LIMBS];
int neg;
int limbs;
-} secp256k1_num_t;
+} secp256k1_num;
#endif
diff --git a/crypto/secp256k1/secp256k1/src/num_gmp_impl.h b/crypto/secp256k1/libsecp256k1/src/num_gmp_impl.h
index dbbc458d5..f43e7a56c 100644
--- a/crypto/secp256k1/secp256k1/src/num_gmp_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/num_gmp_impl.h
@@ -15,18 +15,18 @@
#include "num.h"
#ifdef VERIFY
-static void secp256k1_num_sanity(const secp256k1_num_t *a) {
+static void secp256k1_num_sanity(const secp256k1_num *a) {
VERIFY_CHECK(a->limbs == 1 || (a->limbs > 1 && a->data[a->limbs-1] != 0));
}
#else
#define secp256k1_num_sanity(a) do { } while(0)
#endif
-static void secp256k1_num_copy(secp256k1_num_t *r, const secp256k1_num_t *a) {
+static void secp256k1_num_copy(secp256k1_num *r, const secp256k1_num *a) {
*r = *a;
}
-static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num_t *a) {
+static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num *a) {
unsigned char tmp[65];
int len = 0;
int shift = 0;
@@ -42,7 +42,7 @@ static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const sec
memset(tmp, 0, sizeof(tmp));
}
-static void secp256k1_num_set_bin(secp256k1_num_t *r, const unsigned char *a, unsigned int alen) {
+static void secp256k1_num_set_bin(secp256k1_num *r, const unsigned char *a, unsigned int alen) {
int len;
VERIFY_CHECK(alen > 0);
VERIFY_CHECK(alen <= 64);
@@ -59,7 +59,7 @@ static void secp256k1_num_set_bin(secp256k1_num_t *r, const unsigned char *a, un
}
}
-static void secp256k1_num_add_abs(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) {
+static void secp256k1_num_add_abs(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
mp_limb_t c = mpn_add(r->data, a->data, a->limbs, b->data, b->limbs);
r->limbs = a->limbs;
if (c != 0) {
@@ -68,7 +68,7 @@ static void secp256k1_num_add_abs(secp256k1_num_t *r, const secp256k1_num_t *a,
}
}
-static void secp256k1_num_sub_abs(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) {
+static void secp256k1_num_sub_abs(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
mp_limb_t c = mpn_sub(r->data, a->data, a->limbs, b->data, b->limbs);
VERIFY_CHECK(c == 0);
r->limbs = a->limbs;
@@ -77,7 +77,7 @@ static void secp256k1_num_sub_abs(secp256k1_num_t *r, const secp256k1_num_t *a,
}
}
-static void secp256k1_num_mod(secp256k1_num_t *r, const secp256k1_num_t *m) {
+static void secp256k1_num_mod(secp256k1_num *r, const secp256k1_num *m) {
secp256k1_num_sanity(r);
secp256k1_num_sanity(m);
@@ -97,7 +97,7 @@ static void secp256k1_num_mod(secp256k1_num_t *r, const secp256k1_num_t *m) {
}
}
-static void secp256k1_num_mod_inverse(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *m) {
+static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *m) {
int i;
mp_limb_t g[NUM_LIMBS+1];
mp_limb_t u[NUM_LIMBS+1];
@@ -142,15 +142,15 @@ static void secp256k1_num_mod_inverse(secp256k1_num_t *r, const secp256k1_num_t
memset(v, 0, sizeof(v));
}
-static int secp256k1_num_is_zero(const secp256k1_num_t *a) {
+static int secp256k1_num_is_zero(const secp256k1_num *a) {
return (a->limbs == 1 && a->data[0] == 0);
}
-static int secp256k1_num_is_neg(const secp256k1_num_t *a) {
+static int secp256k1_num_is_neg(const secp256k1_num *a) {
return (a->limbs > 1 || a->data[0] != 0) && a->neg;
}
-static int secp256k1_num_cmp(const secp256k1_num_t *a, const secp256k1_num_t *b) {
+static int secp256k1_num_cmp(const secp256k1_num *a, const secp256k1_num *b) {
if (a->limbs > b->limbs) {
return 1;
}
@@ -160,7 +160,7 @@ static int secp256k1_num_cmp(const secp256k1_num_t *a, const secp256k1_num_t *b)
return mpn_cmp(a->data, b->data, a->limbs);
}
-static int secp256k1_num_eq(const secp256k1_num_t *a, const secp256k1_num_t *b) {
+static int secp256k1_num_eq(const secp256k1_num *a, const secp256k1_num *b) {
if (a->limbs > b->limbs) {
return 0;
}
@@ -173,7 +173,7 @@ static int secp256k1_num_eq(const secp256k1_num_t *a, const secp256k1_num_t *b)
return mpn_cmp(a->data, b->data, a->limbs) == 0;
}
-static void secp256k1_num_subadd(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b, int bneg) {
+static void secp256k1_num_subadd(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b, int bneg) {
if (!(b->neg ^ bneg ^ a->neg)) { /* a and b have the same sign */
r->neg = a->neg;
if (a->limbs >= b->limbs) {
@@ -192,19 +192,19 @@ static void secp256k1_num_subadd(secp256k1_num_t *r, const secp256k1_num_t *a, c
}
}
-static void secp256k1_num_add(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) {
+static void secp256k1_num_add(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
secp256k1_num_sanity(a);
secp256k1_num_sanity(b);
secp256k1_num_subadd(r, a, b, 0);
}
-static void secp256k1_num_sub(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) {
+static void secp256k1_num_sub(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
secp256k1_num_sanity(a);
secp256k1_num_sanity(b);
secp256k1_num_subadd(r, a, b, 1);
}
-static void secp256k1_num_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) {
+static void secp256k1_num_mul(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
mp_limb_t tmp[2*NUM_LIMBS+1];
secp256k1_num_sanity(a);
secp256k1_num_sanity(b);
@@ -231,13 +231,13 @@ static void secp256k1_num_mul(secp256k1_num_t *r, const secp256k1_num_t *a, cons
memset(tmp, 0, sizeof(tmp));
}
-static void secp256k1_num_shift(secp256k1_num_t *r, int bits) {
- int i;
+static void secp256k1_num_shift(secp256k1_num *r, int bits) {
if (bits % GMP_NUMB_BITS) {
/* Shift within limbs. */
mpn_rshift(r->data, r->data, r->limbs, bits % GMP_NUMB_BITS);
}
if (bits >= GMP_NUMB_BITS) {
+ int i;
/* Shift full limbs. */
for (i = 0; i < r->limbs; i++) {
int index = i + (bits / GMP_NUMB_BITS);
@@ -253,7 +253,7 @@ static void secp256k1_num_shift(secp256k1_num_t *r, int bits) {
}
}
-static void secp256k1_num_negate(secp256k1_num_t *r) {
+static void secp256k1_num_negate(secp256k1_num *r) {
r->neg ^= 1;
}
diff --git a/crypto/secp256k1/secp256k1/src/num_impl.h b/crypto/secp256k1/libsecp256k1/src/num_impl.h
index 0b0e3a072..0b0e3a072 100644
--- a/crypto/secp256k1/secp256k1/src/num_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/num_impl.h
diff --git a/crypto/secp256k1/libsecp256k1/src/scalar.h b/crypto/secp256k1/libsecp256k1/src/scalar.h
new file mode 100644
index 000000000..b590ccd6d
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/scalar.h
@@ -0,0 +1,104 @@
+/**********************************************************************
+ * Copyright (c) 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_SCALAR_
+#define _SECP256K1_SCALAR_
+
+#include "num.h"
+
+#if defined HAVE_CONFIG_H
+#include "libsecp256k1-config.h"
+#endif
+
+#if defined(USE_SCALAR_4X64)
+#include "scalar_4x64.h"
+#elif defined(USE_SCALAR_8X32)
+#include "scalar_8x32.h"
+#else
+#error "Please select scalar implementation"
+#endif
+
+/** Clear a scalar to prevent the leak of sensitive data. */
+static void secp256k1_scalar_clear(secp256k1_scalar *r);
+
+/** Access bits from a scalar. All requested bits must belong to the same 32-bit limb. */
+static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count);
+
+/** Access bits from a scalar. Not constant time. */
+static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count);
+
+/** Set a scalar from a big endian byte array. */
+static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow);
+
+/** Set a scalar to an unsigned integer. */
+static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v);
+
+/** Convert a scalar to a byte array. */
+static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a);
+
+/** Add two scalars together (modulo the group order). Returns whether it overflowed. */
+static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b);
+
+/** Conditionally add a power of two to a scalar. The result is not allowed to overflow. */
+static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag);
+
+/** Multiply two scalars (modulo the group order). */
+static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b);
+
+/** Shift a scalar right by some amount strictly between 0 and 16, returning
+ * the low bits that were shifted off */
+static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n);
+
+/** Compute the square of a scalar (modulo the group order). */
+static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a);
+
+/** Compute the inverse of a scalar (modulo the group order). */
+static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *a);
+
+/** Compute the inverse of a scalar (modulo the group order), without constant-time guarantee. */
+static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *a);
+
+/** Compute the complement of a scalar (modulo the group order). */
+static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a);
+
+/** Check whether a scalar equals zero. */
+static int secp256k1_scalar_is_zero(const secp256k1_scalar *a);
+
+/** Check whether a scalar equals one. */
+static int secp256k1_scalar_is_one(const secp256k1_scalar *a);
+
+/** Check whether a scalar, considered as an nonnegative integer, is even. */
+static int secp256k1_scalar_is_even(const secp256k1_scalar *a);
+
+/** Check whether a scalar is higher than the group order divided by 2. */
+static int secp256k1_scalar_is_high(const secp256k1_scalar *a);
+
+/** Conditionally negate a number, in constant time.
+ * Returns -1 if the number was negated, 1 otherwise */
+static int secp256k1_scalar_cond_negate(secp256k1_scalar *a, int flag);
+
+#ifndef USE_NUM_NONE
+/** Convert a scalar to a number. */
+static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a);
+
+/** Get the order of the group as a number. */
+static void secp256k1_scalar_order_get_num(secp256k1_num *r);
+#endif
+
+/** Compare two scalars. */
+static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b);
+
+#ifdef USE_ENDOMORPHISM
+/** Find r1 and r2 such that r1+r2*2^128 = a. */
+static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a);
+/** Find r1 and r2 such that r1+r2*lambda = a, and r1 and r2 are maximum 128 bits long (see secp256k1_gej_mul_lambda). */
+static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a);
+#endif
+
+/** Multiply a and b (without taking the modulus!), divide by 2**shift, and round to the nearest integer. Shift must be at least 256. */
+static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift);
+
+#endif
diff --git a/crypto/secp256k1/secp256k1/src/scalar_4x64.h b/crypto/secp256k1/libsecp256k1/src/scalar_4x64.h
index 82899aa7b..cff406038 100644
--- a/crypto/secp256k1/secp256k1/src/scalar_4x64.h
+++ b/crypto/secp256k1/libsecp256k1/src/scalar_4x64.h
@@ -12,7 +12,7 @@
/** A scalar modulo the group order of the secp256k1 curve. */
typedef struct {
uint64_t d[4];
-} secp256k1_scalar_t;
+} secp256k1_scalar;
#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{((uint64_t)(d1)) << 32 | (d0), ((uint64_t)(d3)) << 32 | (d2), ((uint64_t)(d5)) << 32 | (d4), ((uint64_t)(d7)) << 32 | (d6)}}
diff --git a/crypto/secp256k1/secp256k1/src/scalar_4x64_impl.h b/crypto/secp256k1/libsecp256k1/src/scalar_4x64_impl.h
index ff365292f..cbec34d71 100644
--- a/crypto/secp256k1/secp256k1/src/scalar_4x64_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/scalar_4x64_impl.h
@@ -24,26 +24,26 @@
#define SECP256K1_N_H_2 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
#define SECP256K1_N_H_3 ((uint64_t)0x7FFFFFFFFFFFFFFFULL)
-SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar_t *r) {
+SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) {
r->d[0] = 0;
r->d[1] = 0;
r->d[2] = 0;
r->d[3] = 0;
}
-SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar_t *r, unsigned int v) {
+SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) {
r->d[0] = v;
r->d[1] = 0;
r->d[2] = 0;
r->d[3] = 0;
}
-SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar_t *a, unsigned int offset, unsigned int count) {
+SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
VERIFY_CHECK((offset + count - 1) >> 6 == offset >> 6);
return (a->d[offset >> 6] >> (offset & 0x3F)) & ((((uint64_t)1) << count) - 1);
}
-SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar_t *a, unsigned int offset, unsigned int count) {
+SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
VERIFY_CHECK(count < 32);
VERIFY_CHECK(offset + count <= 256);
if ((offset + count - 1) >> 6 == offset >> 6) {
@@ -54,7 +54,7 @@ SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256
}
}
-SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar_t *a) {
+SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) {
int yes = 0;
int no = 0;
no |= (a->d[3] < SECP256K1_N_3); /* No need for a > check. */
@@ -66,7 +66,7 @@ SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scal
return yes;
}
-SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar_t *r, unsigned int overflow) {
+SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, unsigned int overflow) {
uint128_t t;
VERIFY_CHECK(overflow <= 1);
t = (uint128_t)r->d[0] + overflow * SECP256K1_N_C_0;
@@ -80,7 +80,7 @@ SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar_t *r, unsig
return overflow;
}
-static int secp256k1_scalar_add(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) {
+static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
int overflow;
uint128_t t = (uint128_t)a->d[0] + b->d[0];
r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
@@ -96,9 +96,10 @@ static int secp256k1_scalar_add(secp256k1_scalar_t *r, const secp256k1_scalar_t
return overflow;
}
-static void secp256k1_scalar_add_bit(secp256k1_scalar_t *r, unsigned int bit) {
+static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
uint128_t t;
VERIFY_CHECK(bit < 256);
+ bit += ((uint32_t) flag - 1) & 0x100; /* forcing (bit >> 6) > 3 makes this a noop */
t = (uint128_t)r->d[0] + (((uint64_t)((bit >> 6) == 0)) << (bit & 0x3F));
r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
t += (uint128_t)r->d[1] + (((uint64_t)((bit >> 6) == 1)) << (bit & 0x3F));
@@ -113,7 +114,7 @@ static void secp256k1_scalar_add_bit(secp256k1_scalar_t *r, unsigned int bit) {
#endif
}
-static void secp256k1_scalar_set_b32(secp256k1_scalar_t *r, const unsigned char *b32, int *overflow) {
+static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
int over;
r->d[0] = (uint64_t)b32[31] | (uint64_t)b32[30] << 8 | (uint64_t)b32[29] << 16 | (uint64_t)b32[28] << 24 | (uint64_t)b32[27] << 32 | (uint64_t)b32[26] << 40 | (uint64_t)b32[25] << 48 | (uint64_t)b32[24] << 56;
r->d[1] = (uint64_t)b32[23] | (uint64_t)b32[22] << 8 | (uint64_t)b32[21] << 16 | (uint64_t)b32[20] << 24 | (uint64_t)b32[19] << 32 | (uint64_t)b32[18] << 40 | (uint64_t)b32[17] << 48 | (uint64_t)b32[16] << 56;
@@ -125,18 +126,18 @@ static void secp256k1_scalar_set_b32(secp256k1_scalar_t *r, const unsigned char
}
}
-static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar_t* a) {
+static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
bin[0] = a->d[3] >> 56; bin[1] = a->d[3] >> 48; bin[2] = a->d[3] >> 40; bin[3] = a->d[3] >> 32; bin[4] = a->d[3] >> 24; bin[5] = a->d[3] >> 16; bin[6] = a->d[3] >> 8; bin[7] = a->d[3];
bin[8] = a->d[2] >> 56; bin[9] = a->d[2] >> 48; bin[10] = a->d[2] >> 40; bin[11] = a->d[2] >> 32; bin[12] = a->d[2] >> 24; bin[13] = a->d[2] >> 16; bin[14] = a->d[2] >> 8; bin[15] = a->d[2];
bin[16] = a->d[1] >> 56; bin[17] = a->d[1] >> 48; bin[18] = a->d[1] >> 40; bin[19] = a->d[1] >> 32; bin[20] = a->d[1] >> 24; bin[21] = a->d[1] >> 16; bin[22] = a->d[1] >> 8; bin[23] = a->d[1];
bin[24] = a->d[0] >> 56; bin[25] = a->d[0] >> 48; bin[26] = a->d[0] >> 40; bin[27] = a->d[0] >> 32; bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
}
-SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar_t *a) {
+SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
return (a->d[0] | a->d[1] | a->d[2] | a->d[3]) == 0;
}
-static void secp256k1_scalar_negate(secp256k1_scalar_t *r, const secp256k1_scalar_t *a) {
+static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
uint64_t nonzero = 0xFFFFFFFFFFFFFFFFULL * (secp256k1_scalar_is_zero(a) == 0);
uint128_t t = (uint128_t)(~a->d[0]) + SECP256K1_N_0 + 1;
r->d[0] = t & nonzero; t >>= 64;
@@ -148,11 +149,11 @@ static void secp256k1_scalar_negate(secp256k1_scalar_t *r, const secp256k1_scala
r->d[3] = t & nonzero;
}
-SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar_t *a) {
+SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3]) == 0;
}
-static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a) {
+static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
int yes = 0;
int no = 0;
no |= (a->d[3] < SECP256K1_N_H_3);
@@ -164,6 +165,22 @@ static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a) {
return yes;
}
+static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
+ /* If we are flag = 0, mask = 00...00 and this is a no-op;
+ * if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
+ uint64_t mask = !flag - 1;
+ uint64_t nonzero = (secp256k1_scalar_is_zero(r) != 0) - 1;
+ uint128_t t = (uint128_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask);
+ r->d[0] = t & nonzero; t >>= 64;
+ t += (uint128_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask);
+ r->d[1] = t & nonzero; t >>= 64;
+ t += (uint128_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask);
+ r->d[2] = t & nonzero; t >>= 64;
+ t += (uint128_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask);
+ r->d[3] = t & nonzero;
+ return 2 * (mask == 0) - 1;
+}
+
/* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */
/** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
@@ -250,7 +267,7 @@ static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a) {
VERIFY_CHECK(c2 == 0); \
}
-static void secp256k1_scalar_reduce_512(secp256k1_scalar_t *r, const uint64_t *l) {
+static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l) {
#ifdef USE_ASM_X86_64
/* Reduce 512 bits into 385. */
uint64_t m0, m1, m2, m3, m4, m5, m6;
@@ -559,7 +576,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar_t *r, const uint64_t *l
secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r));
}
-static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) {
+static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar *a, const secp256k1_scalar *b) {
#ifdef USE_ASM_X86_64
const uint64_t *pb = b->d;
__asm__ __volatile__(
@@ -721,12 +738,12 @@ static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar_t *a,
extract(l[5]);
muladd_fast(a->d[3], b->d[3]);
extract_fast(l[6]);
- VERIFY_CHECK(c1 <= 0);
+ VERIFY_CHECK(c1 == 0);
l[7] = c0;
#endif
}
-static void secp256k1_scalar_sqr_512(uint64_t l[8], const secp256k1_scalar_t *a) {
+static void secp256k1_scalar_sqr_512(uint64_t l[8], const secp256k1_scalar *a) {
#ifdef USE_ASM_X86_64
__asm__ __volatile__(
/* Preload */
@@ -871,19 +888,31 @@ static void secp256k1_scalar_sqr_512(uint64_t l[8], const secp256k1_scalar_t *a)
#undef extract
#undef extract_fast
-static void secp256k1_scalar_mul(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) {
+static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
uint64_t l[8];
secp256k1_scalar_mul_512(l, a, b);
secp256k1_scalar_reduce_512(r, l);
}
-static void secp256k1_scalar_sqr(secp256k1_scalar_t *r, const secp256k1_scalar_t *a) {
+static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
+ int ret;
+ VERIFY_CHECK(n > 0);
+ VERIFY_CHECK(n < 16);
+ ret = r->d[0] & ((1 << n) - 1);
+ r->d[0] = (r->d[0] >> n) + (r->d[1] << (64 - n));
+ r->d[1] = (r->d[1] >> n) + (r->d[2] << (64 - n));
+ r->d[2] = (r->d[2] >> n) + (r->d[3] << (64 - n));
+ r->d[3] = (r->d[3] >> n);
+ return ret;
+}
+
+static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) {
uint64_t l[8];
secp256k1_scalar_sqr_512(l, a);
secp256k1_scalar_reduce_512(r, l);
}
-static void secp256k1_scalar_split_128(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a) {
+static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
r1->d[0] = a->d[0];
r1->d[1] = a->d[1];
r1->d[2] = 0;
@@ -894,11 +923,11 @@ static void secp256k1_scalar_split_128(secp256k1_scalar_t *r1, secp256k1_scalar_
r2->d[3] = 0;
}
-SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) {
+SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3])) == 0;
}
-SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b, unsigned int shift) {
+SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) {
uint64_t l[8];
unsigned int shiftlimbs;
unsigned int shiftlow;
@@ -912,9 +941,7 @@ SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar_t *
r->d[1] = shift < 448 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[2] = shift < 384 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[3] = shift < 320 ? (l[3 + shiftlimbs] >> shiftlow) : 0;
- if ((l[(shift - 1) >> 6] >> ((shift - 1) & 0x3f)) & 1) {
- secp256k1_scalar_add_bit(r, 0);
- }
+ secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 6] >> ((shift - 1) & 0x3f)) & 1);
}
#endif
diff --git a/crypto/secp256k1/secp256k1/src/scalar_8x32.h b/crypto/secp256k1/libsecp256k1/src/scalar_8x32.h
index f17017e24..1319664f6 100644
--- a/crypto/secp256k1/secp256k1/src/scalar_8x32.h
+++ b/crypto/secp256k1/libsecp256k1/src/scalar_8x32.h
@@ -12,7 +12,7 @@
/** A scalar modulo the group order of the secp256k1 curve. */
typedef struct {
uint32_t d[8];
-} secp256k1_scalar_t;
+} secp256k1_scalar;
#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{(d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7)}}
diff --git a/crypto/secp256k1/secp256k1/src/scalar_8x32_impl.h b/crypto/secp256k1/libsecp256k1/src/scalar_8x32_impl.h
index 22b31d411..aae4f35c0 100644
--- a/crypto/secp256k1/secp256k1/src/scalar_8x32_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/scalar_8x32_impl.h
@@ -34,7 +34,7 @@
#define SECP256K1_N_H_6 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_H_7 ((uint32_t)0x7FFFFFFFUL)
-SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar_t *r) {
+SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) {
r->d[0] = 0;
r->d[1] = 0;
r->d[2] = 0;
@@ -45,7 +45,7 @@ SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar_t *r) {
r->d[7] = 0;
}
-SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar_t *r, unsigned int v) {
+SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) {
r->d[0] = v;
r->d[1] = 0;
r->d[2] = 0;
@@ -56,12 +56,12 @@ SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar_t *r, uns
r->d[7] = 0;
}
-SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar_t *a, unsigned int offset, unsigned int count) {
+SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
VERIFY_CHECK((offset + count - 1) >> 5 == offset >> 5);
return (a->d[offset >> 5] >> (offset & 0x1F)) & ((1 << count) - 1);
}
-SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar_t *a, unsigned int offset, unsigned int count) {
+SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
VERIFY_CHECK(count < 32);
VERIFY_CHECK(offset + count <= 256);
if ((offset + count - 1) >> 5 == offset >> 5) {
@@ -72,7 +72,7 @@ SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256
}
}
-SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar_t *a) {
+SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) {
int yes = 0;
int no = 0;
no |= (a->d[7] < SECP256K1_N_7); /* No need for a > check. */
@@ -90,7 +90,7 @@ SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scal
return yes;
}
-SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar_t *r, uint32_t overflow) {
+SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, uint32_t overflow) {
uint64_t t;
VERIFY_CHECK(overflow <= 1);
t = (uint64_t)r->d[0] + overflow * SECP256K1_N_C_0;
@@ -112,7 +112,7 @@ SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar_t *r, uint3
return overflow;
}
-static int secp256k1_scalar_add(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) {
+static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
int overflow;
uint64_t t = (uint64_t)a->d[0] + b->d[0];
r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
@@ -136,9 +136,10 @@ static int secp256k1_scalar_add(secp256k1_scalar_t *r, const secp256k1_scalar_t
return overflow;
}
-static void secp256k1_scalar_add_bit(secp256k1_scalar_t *r, unsigned int bit) {
+static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
uint64_t t;
VERIFY_CHECK(bit < 256);
+ bit += ((uint32_t) flag - 1) & 0x100; /* forcing (bit >> 5) > 7 makes this a noop */
t = (uint64_t)r->d[0] + (((uint32_t)((bit >> 5) == 0)) << (bit & 0x1F));
r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[1] + (((uint32_t)((bit >> 5) == 1)) << (bit & 0x1F));
@@ -161,7 +162,7 @@ static void secp256k1_scalar_add_bit(secp256k1_scalar_t *r, unsigned int bit) {
#endif
}
-static void secp256k1_scalar_set_b32(secp256k1_scalar_t *r, const unsigned char *b32, int *overflow) {
+static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
int over;
r->d[0] = (uint32_t)b32[31] | (uint32_t)b32[30] << 8 | (uint32_t)b32[29] << 16 | (uint32_t)b32[28] << 24;
r->d[1] = (uint32_t)b32[27] | (uint32_t)b32[26] << 8 | (uint32_t)b32[25] << 16 | (uint32_t)b32[24] << 24;
@@ -177,7 +178,7 @@ static void secp256k1_scalar_set_b32(secp256k1_scalar_t *r, const unsigned char
}
}
-static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar_t* a) {
+static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
bin[0] = a->d[7] >> 24; bin[1] = a->d[7] >> 16; bin[2] = a->d[7] >> 8; bin[3] = a->d[7];
bin[4] = a->d[6] >> 24; bin[5] = a->d[6] >> 16; bin[6] = a->d[6] >> 8; bin[7] = a->d[6];
bin[8] = a->d[5] >> 24; bin[9] = a->d[5] >> 16; bin[10] = a->d[5] >> 8; bin[11] = a->d[5];
@@ -188,11 +189,11 @@ static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar_
bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
}
-SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar_t *a) {
+SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
return (a->d[0] | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
}
-static void secp256k1_scalar_negate(secp256k1_scalar_t *r, const secp256k1_scalar_t *a) {
+static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(a) == 0);
uint64_t t = (uint64_t)(~a->d[0]) + SECP256K1_N_0 + 1;
r->d[0] = t & nonzero; t >>= 32;
@@ -212,11 +213,11 @@ static void secp256k1_scalar_negate(secp256k1_scalar_t *r, const secp256k1_scala
r->d[7] = t & nonzero;
}
-SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar_t *a) {
+SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
}
-static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a) {
+static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
int yes = 0;
int no = 0;
no |= (a->d[7] < SECP256K1_N_H_7);
@@ -234,6 +235,31 @@ static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a) {
return yes;
}
+static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
+ /* If we are flag = 0, mask = 00...00 and this is a no-op;
+ * if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
+ uint32_t mask = !flag - 1;
+ uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(r) == 0);
+ uint64_t t = (uint64_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask);
+ r->d[0] = t & nonzero; t >>= 32;
+ t += (uint64_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask);
+ r->d[1] = t & nonzero; t >>= 32;
+ t += (uint64_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask);
+ r->d[2] = t & nonzero; t >>= 32;
+ t += (uint64_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask);
+ r->d[3] = t & nonzero; t >>= 32;
+ t += (uint64_t)(r->d[4] ^ mask) + (SECP256K1_N_4 & mask);
+ r->d[4] = t & nonzero; t >>= 32;
+ t += (uint64_t)(r->d[5] ^ mask) + (SECP256K1_N_5 & mask);
+ r->d[5] = t & nonzero; t >>= 32;
+ t += (uint64_t)(r->d[6] ^ mask) + (SECP256K1_N_6 & mask);
+ r->d[6] = t & nonzero; t >>= 32;
+ t += (uint64_t)(r->d[7] ^ mask) + (SECP256K1_N_7 & mask);
+ r->d[7] = t & nonzero;
+ return 2 * (mask == 0) - 1;
+}
+
+
/* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */
/** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
@@ -320,7 +346,7 @@ static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a) {
VERIFY_CHECK(c2 == 0); \
}
-static void secp256k1_scalar_reduce_512(secp256k1_scalar_t *r, const uint32_t *l) {
+static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint32_t *l) {
uint64_t c;
uint32_t n0 = l[8], n1 = l[9], n2 = l[10], n3 = l[11], n4 = l[12], n5 = l[13], n6 = l[14], n7 = l[15];
uint32_t m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12;
@@ -462,7 +488,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar_t *r, const uint32_t *l
secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r));
}
-static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) {
+static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar *a, const secp256k1_scalar *b) {
/* 96 bit accumulator. */
uint32_t c0 = 0, c1 = 0, c2 = 0;
@@ -550,7 +576,7 @@ static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar_t *a, c
l[15] = c0;
}
-static void secp256k1_scalar_sqr_512(uint32_t *l, const secp256k1_scalar_t *a) {
+static void secp256k1_scalar_sqr_512(uint32_t *l, const secp256k1_scalar *a) {
/* 96 bit accumulator. */
uint32_t c0 = 0, c1 = 0, c2 = 0;
@@ -618,20 +644,36 @@ static void secp256k1_scalar_sqr_512(uint32_t *l, const secp256k1_scalar_t *a) {
#undef extract
#undef extract_fast
-static void secp256k1_scalar_mul(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) {
+static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
uint32_t l[16];
secp256k1_scalar_mul_512(l, a, b);
secp256k1_scalar_reduce_512(r, l);
}
-static void secp256k1_scalar_sqr(secp256k1_scalar_t *r, const secp256k1_scalar_t *a) {
+static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
+ int ret;
+ VERIFY_CHECK(n > 0);
+ VERIFY_CHECK(n < 16);
+ ret = r->d[0] & ((1 << n) - 1);
+ r->d[0] = (r->d[0] >> n) + (r->d[1] << (32 - n));
+ r->d[1] = (r->d[1] >> n) + (r->d[2] << (32 - n));
+ r->d[2] = (r->d[2] >> n) + (r->d[3] << (32 - n));
+ r->d[3] = (r->d[3] >> n) + (r->d[4] << (32 - n));
+ r->d[4] = (r->d[4] >> n) + (r->d[5] << (32 - n));
+ r->d[5] = (r->d[5] >> n) + (r->d[6] << (32 - n));
+ r->d[6] = (r->d[6] >> n) + (r->d[7] << (32 - n));
+ r->d[7] = (r->d[7] >> n);
+ return ret;
+}
+
+static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) {
uint32_t l[16];
secp256k1_scalar_sqr_512(l, a);
secp256k1_scalar_reduce_512(r, l);
}
#ifdef USE_ENDOMORPHISM
-static void secp256k1_scalar_split_128(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a) {
+static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
r1->d[0] = a->d[0];
r1->d[1] = a->d[1];
r1->d[2] = a->d[2];
@@ -651,11 +693,11 @@ static void secp256k1_scalar_split_128(secp256k1_scalar_t *r1, secp256k1_scalar_
}
#endif
-SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) {
+SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3]) | (a->d[4] ^ b->d[4]) | (a->d[5] ^ b->d[5]) | (a->d[6] ^ b->d[6]) | (a->d[7] ^ b->d[7])) == 0;
}
-SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b, unsigned int shift) {
+SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) {
uint32_t l[16];
unsigned int shiftlimbs;
unsigned int shiftlow;
@@ -673,9 +715,7 @@ SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar_t *
r->d[5] = shift < 352 ? (l[5 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[6 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[6] = shift < 320 ? (l[6 + shiftlimbs] >> shiftlow | (shift < 288 && shiftlow ? (l[7 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[7] = shift < 288 ? (l[7 + shiftlimbs] >> shiftlow) : 0;
- if ((l[(shift - 1) >> 5] >> ((shift - 1) & 0x1f)) & 1) {
- secp256k1_scalar_add_bit(r, 0);
- }
+ secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 5] >> ((shift - 1) & 0x1f)) & 1);
}
#endif
diff --git a/crypto/secp256k1/secp256k1/src/scalar_impl.h b/crypto/secp256k1/libsecp256k1/src/scalar_impl.h
index 33824983e..88ea97de8 100644
--- a/crypto/secp256k1/secp256k1/src/scalar_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/scalar_impl.h
@@ -25,14 +25,14 @@
#endif
#ifndef USE_NUM_NONE
-static void secp256k1_scalar_get_num(secp256k1_num_t *r, const secp256k1_scalar_t *a) {
+static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a) {
unsigned char c[32];
secp256k1_scalar_get_b32(c, a);
secp256k1_num_set_bin(r, c, 32);
}
/** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */
-static void secp256k1_scalar_order_get_num(secp256k1_num_t *r) {
+static void secp256k1_scalar_order_get_num(secp256k1_num *r) {
static const unsigned char order[32] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
@@ -43,11 +43,11 @@ static void secp256k1_scalar_order_get_num(secp256k1_num_t *r) {
}
#endif
-static void secp256k1_scalar_inverse(secp256k1_scalar_t *r, const secp256k1_scalar_t *x) {
- secp256k1_scalar_t *t;
+static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
+ secp256k1_scalar *t;
int i;
/* First compute x ^ (2^N - 1) for some values of N. */
- secp256k1_scalar_t x2, x3, x4, x6, x7, x8, x15, x30, x60, x120, x127;
+ secp256k1_scalar x2, x3, x4, x6, x7, x8, x15, x30, x60, x120, x127;
secp256k1_scalar_sqr(&x2, x);
secp256k1_scalar_mul(&x2, &x2, x);
@@ -234,18 +234,27 @@ static void secp256k1_scalar_inverse(secp256k1_scalar_t *r, const secp256k1_scal
secp256k1_scalar_mul(r, t, &x6); /* 111111 */
}
-static void secp256k1_scalar_inverse_var(secp256k1_scalar_t *r, const secp256k1_scalar_t *x) {
+SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
+ /* d[0] is present and is the lowest word for all representations */
+ return !(a->d[0] & 1);
+}
+
+static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
#if defined(USE_SCALAR_INV_BUILTIN)
secp256k1_scalar_inverse(r, x);
#elif defined(USE_SCALAR_INV_NUM)
unsigned char b[32];
- secp256k1_num_t n, m;
- secp256k1_scalar_get_b32(b, x);
+ secp256k1_num n, m;
+ secp256k1_scalar t = *x;
+ secp256k1_scalar_get_b32(b, &t);
secp256k1_num_set_bin(&n, b, 32);
secp256k1_scalar_order_get_num(&m);
secp256k1_num_mod_inverse(&n, &n, &m);
secp256k1_num_get_bin(b, 32, &n);
secp256k1_scalar_set_b32(r, b, NULL);
+ /* Verify that the inverse was computed correctly, without GMP code. */
+ secp256k1_scalar_mul(&t, &t, r);
+ CHECK(secp256k1_scalar_is_one(&t));
#else
#error "Please select scalar inverse implementation"
#endif
@@ -290,30 +299,31 @@ static void secp256k1_scalar_inverse_var(secp256k1_scalar_t *r, const secp256k1_
* The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order).
*/
-static void secp256k1_scalar_split_lambda_var(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a) {
- secp256k1_scalar_t c1, c2;
- static const secp256k1_scalar_t minus_lambda = SECP256K1_SCALAR_CONST(
+static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
+ secp256k1_scalar c1, c2;
+ static const secp256k1_scalar minus_lambda = SECP256K1_SCALAR_CONST(
0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL,
0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL
);
- static const secp256k1_scalar_t minus_b1 = SECP256K1_SCALAR_CONST(
+ static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST(
0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL,
0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL
);
- static const secp256k1_scalar_t minus_b2 = SECP256K1_SCALAR_CONST(
+ static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST(
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL
);
- static const secp256k1_scalar_t g1 = SECP256K1_SCALAR_CONST(
+ static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST(
0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL,
0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL
);
- static const secp256k1_scalar_t g2 = SECP256K1_SCALAR_CONST(
+ static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST(
0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL,
0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL
);
VERIFY_CHECK(r1 != a);
VERIFY_CHECK(r2 != a);
+ /* these _var calls are constant time since the shift amount is constant */
secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272);
secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272);
secp256k1_scalar_mul(&c1, &c1, &minus_b1);
diff --git a/crypto/secp256k1/libsecp256k1/src/secp256k1.c b/crypto/secp256k1/libsecp256k1/src/secp256k1.c
new file mode 100644
index 000000000..203f880af
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/secp256k1.c
@@ -0,0 +1,513 @@
+/**********************************************************************
+ * Copyright (c) 2013-2015 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#define SECP256K1_BUILD (1)
+
+#include "include/secp256k1.h"
+
+#include "util.h"
+#include "num_impl.h"
+#include "field_impl.h"
+#include "scalar_impl.h"
+#include "group_impl.h"
+#include "ecmult_impl.h"
+#include "ecmult_const_impl.h"
+#include "ecmult_gen_impl.h"
+#include "ecdsa_impl.h"
+#include "eckey_impl.h"
+#include "hash_impl.h"
+
+#define ARG_CHECK(cond) do { \
+ if (EXPECT(!(cond), 0)) { \
+ secp256k1_callback_call(&ctx->illegal_callback, #cond); \
+ return 0; \
+ } \
+} while(0)
+
+static void default_illegal_callback_fn(const char* str, void* data) {
+ (void)data;
+ fprintf(stderr, "[libsecp256k1] illegal argument: %s\n", str);
+ abort();
+}
+
+static const secp256k1_callback default_illegal_callback = {
+ default_illegal_callback_fn,
+ NULL
+};
+
+static void default_error_callback_fn(const char* str, void* data) {
+ (void)data;
+ fprintf(stderr, "[libsecp256k1] internal consistency check failed: %s\n", str);
+ abort();
+}
+
+static const secp256k1_callback default_error_callback = {
+ default_error_callback_fn,
+ NULL
+};
+
+
+struct secp256k1_context_struct {
+ secp256k1_ecmult_context ecmult_ctx;
+ secp256k1_ecmult_gen_context ecmult_gen_ctx;
+ secp256k1_callback illegal_callback;
+ secp256k1_callback error_callback;
+};
+
+secp256k1_context* secp256k1_context_create(unsigned int flags) {
+ secp256k1_context* ret = (secp256k1_context*)checked_malloc(&default_error_callback, sizeof(secp256k1_context));
+ ret->illegal_callback = default_illegal_callback;
+ ret->error_callback = default_error_callback;
+
+ secp256k1_ecmult_context_init(&ret->ecmult_ctx);
+ secp256k1_ecmult_gen_context_init(&ret->ecmult_gen_ctx);
+
+ if (flags & SECP256K1_CONTEXT_SIGN) {
+ secp256k1_ecmult_gen_context_build(&ret->ecmult_gen_ctx, &ret->error_callback);
+ }
+ if (flags & SECP256K1_CONTEXT_VERIFY) {
+ secp256k1_ecmult_context_build(&ret->ecmult_ctx, &ret->error_callback);
+ }
+
+ return ret;
+}
+
+secp256k1_context* secp256k1_context_clone(const secp256k1_context* ctx) {
+ secp256k1_context* ret = (secp256k1_context*)checked_malloc(&ctx->error_callback, sizeof(secp256k1_context));
+ ret->illegal_callback = ctx->illegal_callback;
+ ret->error_callback = ctx->error_callback;
+ secp256k1_ecmult_context_clone(&ret->ecmult_ctx, &ctx->ecmult_ctx, &ctx->error_callback);
+ secp256k1_ecmult_gen_context_clone(&ret->ecmult_gen_ctx, &ctx->ecmult_gen_ctx, &ctx->error_callback);
+ return ret;
+}
+
+void secp256k1_context_destroy(secp256k1_context* ctx) {
+ if (ctx != NULL) {
+ secp256k1_ecmult_context_clear(&ctx->ecmult_ctx);
+ secp256k1_ecmult_gen_context_clear(&ctx->ecmult_gen_ctx);
+
+ free(ctx);
+ }
+}
+
+void secp256k1_context_set_illegal_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) {
+ if (fun == NULL) {
+ fun = default_illegal_callback_fn;
+ }
+ ctx->illegal_callback.fn = fun;
+ ctx->illegal_callback.data = data;
+}
+
+void secp256k1_context_set_error_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) {
+ if (fun == NULL) {
+ fun = default_error_callback_fn;
+ }
+ ctx->error_callback.fn = fun;
+ ctx->error_callback.data = data;
+}
+
+static int secp256k1_pubkey_load(const secp256k1_context* ctx, secp256k1_ge* ge, const secp256k1_pubkey* pubkey) {
+ if (sizeof(secp256k1_ge_storage) == 64) {
+ /* When the secp256k1_ge_storage type is exactly 64 byte, use its
+ * representation inside secp256k1_pubkey, as conversion is very fast.
+ * Note that secp256k1_pubkey_save must use the same representation. */
+ secp256k1_ge_storage s;
+ memcpy(&s, &pubkey->data[0], 64);
+ secp256k1_ge_from_storage(ge, &s);
+ } else {
+ /* Otherwise, fall back to 32-byte big endian for X and Y. */
+ secp256k1_fe x, y;
+ secp256k1_fe_set_b32(&x, pubkey->data);
+ secp256k1_fe_set_b32(&y, pubkey->data + 32);
+ secp256k1_ge_set_xy(ge, &x, &y);
+ }
+ ARG_CHECK(!secp256k1_fe_is_zero(&ge->x));
+ return 1;
+}
+
+static void secp256k1_pubkey_save(secp256k1_pubkey* pubkey, secp256k1_ge* ge) {
+ if (sizeof(secp256k1_ge_storage) == 64) {
+ secp256k1_ge_storage s;
+ secp256k1_ge_to_storage(&s, ge);
+ memcpy(&pubkey->data[0], &s, 64);
+ } else {
+ VERIFY_CHECK(!secp256k1_ge_is_infinity(ge));
+ secp256k1_fe_normalize_var(&ge->x);
+ secp256k1_fe_normalize_var(&ge->y);
+ secp256k1_fe_get_b32(pubkey->data, &ge->x);
+ secp256k1_fe_get_b32(pubkey->data + 32, &ge->y);
+ }
+}
+
+int secp256k1_ec_pubkey_parse(const secp256k1_context* ctx, secp256k1_pubkey* pubkey, const unsigned char *input, size_t inputlen) {
+ secp256k1_ge Q;
+
+ (void)ctx;
+ if (!secp256k1_eckey_pubkey_parse(&Q, input, inputlen)) {
+ memset(pubkey, 0, sizeof(*pubkey));
+ return 0;
+ }
+ secp256k1_pubkey_save(pubkey, &Q);
+ secp256k1_ge_clear(&Q);
+ return 1;
+}
+
+int secp256k1_ec_pubkey_serialize(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_pubkey* pubkey, unsigned int flags) {
+ secp256k1_ge Q;
+
+ (void)ctx;
+ return (secp256k1_pubkey_load(ctx, &Q, pubkey) &&
+ secp256k1_eckey_pubkey_serialize(&Q, output, outputlen, flags));
+}
+
+static void secp256k1_ecdsa_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_ecdsa_signature* sig) {
+ (void)ctx;
+ if (sizeof(secp256k1_scalar) == 32) {
+ /* When the secp256k1_scalar type is exactly 32 byte, use its
+ * representation inside secp256k1_ecdsa_signature, as conversion is very fast.
+ * Note that secp256k1_ecdsa_signature_save must use the same representation. */
+ memcpy(r, &sig->data[0], 32);
+ memcpy(s, &sig->data[32], 32);
+ } else {
+ secp256k1_scalar_set_b32(r, &sig->data[0], NULL);
+ secp256k1_scalar_set_b32(s, &sig->data[32], NULL);
+ }
+}
+
+static void secp256k1_ecdsa_signature_save(secp256k1_ecdsa_signature* sig, const secp256k1_scalar* r, const secp256k1_scalar* s) {
+ if (sizeof(secp256k1_scalar) == 32) {
+ memcpy(&sig->data[0], r, 32);
+ memcpy(&sig->data[32], s, 32);
+ } else {
+ secp256k1_scalar_get_b32(&sig->data[0], r);
+ secp256k1_scalar_get_b32(&sig->data[32], s);
+ }
+}
+
+int secp256k1_ecdsa_signature_parse_der(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) {
+ secp256k1_scalar r, s;
+
+ (void)ctx;
+ ARG_CHECK(sig != NULL);
+ ARG_CHECK(input != NULL);
+
+ if (secp256k1_ecdsa_sig_parse(&r, &s, input, inputlen)) {
+ secp256k1_ecdsa_signature_save(sig, &r, &s);
+ return 1;
+ } else {
+ memset(sig, 0, sizeof(*sig));
+ return 0;
+ }
+}
+
+int secp256k1_ecdsa_signature_serialize_der(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_ecdsa_signature* sig) {
+ secp256k1_scalar r, s;
+
+ (void)ctx;
+ ARG_CHECK(output != NULL);
+ ARG_CHECK(outputlen != NULL);
+ ARG_CHECK(sig != NULL);
+
+ secp256k1_ecdsa_signature_load(ctx, &r, &s, sig);
+ return secp256k1_ecdsa_sig_serialize(output, outputlen, &r, &s);
+}
+
+int secp256k1_ecdsa_verify(const secp256k1_context* ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msg32, const secp256k1_pubkey *pubkey) {
+ secp256k1_ge q;
+ secp256k1_scalar r, s;
+ secp256k1_scalar m;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
+ ARG_CHECK(msg32 != NULL);
+ ARG_CHECK(sig != NULL);
+ ARG_CHECK(pubkey != NULL);
+
+ secp256k1_scalar_set_b32(&m, msg32, NULL);
+ secp256k1_ecdsa_signature_load(ctx, &r, &s, sig);
+ return (secp256k1_pubkey_load(ctx, &q, pubkey) &&
+ secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &r, &s, &q, &m));
+}
+
+static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) {
+ unsigned char keydata[112];
+ int keylen = 64;
+ secp256k1_rfc6979_hmac_sha256_t rng;
+ unsigned int i;
+ /* We feed a byte array to the PRNG as input, consisting of:
+ * - the private key (32 bytes) and message (32 bytes), see RFC 6979 3.2d.
+ * - optionally 32 extra bytes of data, see RFC 6979 3.6 Additional Data.
+ * - optionally 16 extra bytes with the algorithm name (the extra data bytes
+ * are set to zeroes when not present, while the algorithm name is).
+ */
+ memcpy(keydata, key32, 32);
+ memcpy(keydata + 32, msg32, 32);
+ if (data != NULL) {
+ memcpy(keydata + 64, data, 32);
+ keylen = 96;
+ }
+ if (algo16 != NULL) {
+ memset(keydata + keylen, 0, 96 - keylen);
+ memcpy(keydata + 96, algo16, 16);
+ keylen = 112;
+ }
+ secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, keylen);
+ memset(keydata, 0, sizeof(keydata));
+ for (i = 0; i <= counter; i++) {
+ secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
+ }
+ secp256k1_rfc6979_hmac_sha256_finalize(&rng);
+ return 1;
+}
+
+const secp256k1_nonce_function secp256k1_nonce_function_rfc6979 = nonce_function_rfc6979;
+const secp256k1_nonce_function secp256k1_nonce_function_default = nonce_function_rfc6979;
+
+int secp256k1_ecdsa_sign(const secp256k1_context* ctx, secp256k1_ecdsa_signature *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) {
+ secp256k1_scalar r, s;
+ secp256k1_scalar sec, non, msg;
+ int ret = 0;
+ int overflow = 0;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
+ ARG_CHECK(msg32 != NULL);
+ ARG_CHECK(signature != NULL);
+ ARG_CHECK(seckey != NULL);
+ if (noncefp == NULL) {
+ noncefp = secp256k1_nonce_function_default;
+ }
+
+ secp256k1_scalar_set_b32(&sec, seckey, &overflow);
+ /* Fail if the secret key is invalid. */
+ if (!overflow && !secp256k1_scalar_is_zero(&sec)) {
+ unsigned int count = 0;
+ secp256k1_scalar_set_b32(&msg, msg32, NULL);
+ while (1) {
+ unsigned char nonce32[32];
+ ret = noncefp(nonce32, msg32, seckey, NULL, (void*)noncedata, count);
+ if (!ret) {
+ break;
+ }
+ secp256k1_scalar_set_b32(&non, nonce32, &overflow);
+ memset(nonce32, 0, 32);
+ if (!overflow && !secp256k1_scalar_is_zero(&non)) {
+ if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &r, &s, &sec, &msg, &non, NULL)) {
+ break;
+ }
+ }
+ count++;
+ }
+ secp256k1_scalar_clear(&msg);
+ secp256k1_scalar_clear(&non);
+ secp256k1_scalar_clear(&sec);
+ }
+ if (ret) {
+ secp256k1_ecdsa_signature_save(signature, &r, &s);
+ } else {
+ memset(signature, 0, sizeof(*signature));
+ }
+ return ret;
+}
+
+int secp256k1_ec_seckey_verify(const secp256k1_context* ctx, const unsigned char *seckey) {
+ secp256k1_scalar sec;
+ int ret;
+ int overflow;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(seckey != NULL);
+ (void)ctx;
+
+ secp256k1_scalar_set_b32(&sec, seckey, &overflow);
+ ret = !overflow && !secp256k1_scalar_is_zero(&sec);
+ secp256k1_scalar_clear(&sec);
+ return ret;
+}
+
+int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *seckey) {
+ secp256k1_gej pj;
+ secp256k1_ge p;
+ secp256k1_scalar sec;
+ int overflow;
+ int ret = 0;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
+ ARG_CHECK(pubkey != NULL);
+ ARG_CHECK(seckey != NULL);
+
+ secp256k1_scalar_set_b32(&sec, seckey, &overflow);
+ ret = (!overflow) & (!secp256k1_scalar_is_zero(&sec));
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pj, &sec);
+ secp256k1_ge_set_gej(&p, &pj);
+ secp256k1_pubkey_save(pubkey, &p);
+ secp256k1_scalar_clear(&sec);
+ if (!ret) {
+ memset(pubkey, 0, sizeof(*pubkey));
+ }
+ return ret;
+}
+
+int secp256k1_ec_privkey_tweak_add(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
+ secp256k1_scalar term;
+ secp256k1_scalar sec;
+ int ret = 0;
+ int overflow = 0;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(seckey != NULL);
+ ARG_CHECK(tweak != NULL);
+ (void)ctx;
+
+ secp256k1_scalar_set_b32(&term, tweak, &overflow);
+ secp256k1_scalar_set_b32(&sec, seckey, NULL);
+
+ ret = !overflow && secp256k1_eckey_privkey_tweak_add(&sec, &term);
+ if (ret) {
+ secp256k1_scalar_get_b32(seckey, &sec);
+ }
+
+ secp256k1_scalar_clear(&sec);
+ secp256k1_scalar_clear(&term);
+ return ret;
+}
+
+int secp256k1_ec_pubkey_tweak_add(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) {
+ secp256k1_ge p;
+ secp256k1_scalar term;
+ int ret = 0;
+ int overflow = 0;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
+ ARG_CHECK(pubkey != NULL);
+ ARG_CHECK(tweak != NULL);
+
+ secp256k1_scalar_set_b32(&term, tweak, &overflow);
+ if (!overflow && secp256k1_pubkey_load(ctx, &p, pubkey)) {
+ ret = secp256k1_eckey_pubkey_tweak_add(&ctx->ecmult_ctx, &p, &term);
+ if (ret) {
+ secp256k1_pubkey_save(pubkey, &p);
+ } else {
+ memset(pubkey, 0, sizeof(*pubkey));
+ }
+ }
+
+ return ret;
+}
+
+int secp256k1_ec_privkey_tweak_mul(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
+ secp256k1_scalar factor;
+ secp256k1_scalar sec;
+ int ret = 0;
+ int overflow = 0;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(seckey != NULL);
+ ARG_CHECK(tweak != NULL);
+ (void)ctx;
+
+ secp256k1_scalar_set_b32(&factor, tweak, &overflow);
+ secp256k1_scalar_set_b32(&sec, seckey, NULL);
+ ret = !overflow && secp256k1_eckey_privkey_tweak_mul(&sec, &factor);
+ if (ret) {
+ secp256k1_scalar_get_b32(seckey, &sec);
+ }
+
+ secp256k1_scalar_clear(&sec);
+ secp256k1_scalar_clear(&factor);
+ return ret;
+}
+
+int secp256k1_ec_pubkey_tweak_mul(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) {
+ secp256k1_ge p;
+ secp256k1_scalar factor;
+ int ret = 0;
+ int overflow = 0;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
+ ARG_CHECK(pubkey != NULL);
+ ARG_CHECK(tweak != NULL);
+
+ secp256k1_scalar_set_b32(&factor, tweak, &overflow);
+ if (!overflow && secp256k1_pubkey_load(ctx, &p, pubkey)) {
+ ret = secp256k1_eckey_pubkey_tweak_mul(&ctx->ecmult_ctx, &p, &factor);
+ if (ret) {
+ secp256k1_pubkey_save(pubkey, &p);
+ } else {
+ memset(pubkey, 0, sizeof(*pubkey));
+ }
+ }
+
+ return ret;
+}
+
+int secp256k1_ec_privkey_export(const secp256k1_context* ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *seckey, unsigned int flags) {
+ secp256k1_scalar key;
+ int ret = 0;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(seckey != NULL);
+ ARG_CHECK(privkey != NULL);
+ ARG_CHECK(privkeylen != NULL);
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
+
+ secp256k1_scalar_set_b32(&key, seckey, NULL);
+ ret = secp256k1_eckey_privkey_serialize(&ctx->ecmult_gen_ctx, privkey, privkeylen, &key, flags);
+ secp256k1_scalar_clear(&key);
+ return ret;
+}
+
+int secp256k1_ec_privkey_import(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *privkey, size_t privkeylen) {
+ secp256k1_scalar key;
+ int ret = 0;
+ ARG_CHECK(seckey != NULL);
+ ARG_CHECK(privkey != NULL);
+ (void)ctx;
+
+ ret = secp256k1_eckey_privkey_parse(&key, privkey, privkeylen);
+ if (ret) {
+ secp256k1_scalar_get_b32(seckey, &key);
+ }
+ secp256k1_scalar_clear(&key);
+ return ret;
+}
+
+int secp256k1_context_randomize(secp256k1_context* ctx, const unsigned char *seed32) {
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
+ secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32);
+ return 1;
+}
+
+int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey *pubnonce, const secp256k1_pubkey * const *pubnonces, int n) {
+ int i;
+ secp256k1_gej Qj;
+ secp256k1_ge Q;
+
+ ARG_CHECK(pubnonce != NULL);
+ ARG_CHECK(n >= 1);
+ ARG_CHECK(pubnonces != NULL);
+
+ secp256k1_gej_set_infinity(&Qj);
+
+ for (i = 0; i < n; i++) {
+ secp256k1_pubkey_load(ctx, &Q, pubnonces[i]);
+ secp256k1_gej_add_ge(&Qj, &Qj, &Q);
+ }
+ if (secp256k1_gej_is_infinity(&Qj)) {
+ memset(pubnonce, 0, sizeof(*pubnonce));
+ return 0;
+ }
+ secp256k1_ge_set_gej(&Q, &Qj);
+ secp256k1_pubkey_save(pubnonce, &Q);
+ return 1;
+}
+
+#ifdef ENABLE_MODULE_ECDH
+# include "modules/ecdh/main_impl.h"
+#endif
+
+#ifdef ENABLE_MODULE_SCHNORR
+# include "modules/schnorr/main_impl.h"
+#endif
+
+#ifdef ENABLE_MODULE_RECOVERY
+# include "modules/recovery/main_impl.h"
+#endif
diff --git a/crypto/secp256k1/secp256k1/src/testrand.h b/crypto/secp256k1/libsecp256k1/src/testrand.h
index 041bb92c4..041bb92c4 100644
--- a/crypto/secp256k1/secp256k1/src/testrand.h
+++ b/crypto/secp256k1/libsecp256k1/src/testrand.h
diff --git a/crypto/secp256k1/secp256k1/src/testrand_impl.h b/crypto/secp256k1/libsecp256k1/src/testrand_impl.h
index 21c69f1c5..7c3554266 100644
--- a/crypto/secp256k1/secp256k1/src/testrand_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/testrand_impl.h
@@ -18,7 +18,7 @@ static uint32_t secp256k1_test_rng_precomputed[8];
static int secp256k1_test_rng_precomputed_used = 8;
SECP256K1_INLINE static void secp256k1_rand_seed(const unsigned char *seed16) {
- secp256k1_rfc6979_hmac_sha256_initialize(&secp256k1_test_rng, (const unsigned char*)"TestRNG", 7, seed16, 16, NULL, 0);
+ secp256k1_rfc6979_hmac_sha256_initialize(&secp256k1_test_rng, seed16, 16);
}
SECP256K1_INLINE static uint32_t secp256k1_rand32(void) {
diff --git a/crypto/secp256k1/secp256k1/src/tests.c b/crypto/secp256k1/libsecp256k1/src/tests.c
index 6c473a0c1..3366d90fc 100644
--- a/crypto/secp256k1/secp256k1/src/tests.c
+++ b/crypto/secp256k1/libsecp256k1/src/tests.c
@@ -1,5 +1,5 @@
/**********************************************************************
- * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
@@ -13,6 +13,7 @@
#include <time.h>
+#include "include/secp256k1.h"
#include "secp256k1.c"
#include "testrand_impl.h"
@@ -24,8 +25,9 @@
#endif
static int count = 64;
+static secp256k1_context *ctx = NULL;
-void random_field_element_test(secp256k1_fe_t *fe) {
+void random_field_element_test(secp256k1_fe *fe) {
do {
unsigned char b32[32];
secp256k1_rand256_test(b32);
@@ -35,8 +37,8 @@ void random_field_element_test(secp256k1_fe_t *fe) {
} while(1);
}
-void random_field_element_magnitude(secp256k1_fe_t *fe) {
- secp256k1_fe_t zero;
+void random_field_element_magnitude(secp256k1_fe *fe) {
+ secp256k1_fe zero;
int n = secp256k1_rand32() % 9;
secp256k1_fe_normalize(fe);
if (n == 0) {
@@ -46,23 +48,22 @@ void random_field_element_magnitude(secp256k1_fe_t *fe) {
secp256k1_fe_negate(&zero, &zero, 0);
secp256k1_fe_mul_int(&zero, n - 1);
secp256k1_fe_add(fe, &zero);
-#ifdef VERIFY
- CHECK(fe->magnitude == n);
-#endif
+ VERIFY_CHECK(fe->magnitude == n);
}
-void random_group_element_test(secp256k1_ge_t *ge) {
- secp256k1_fe_t fe;
+void random_group_element_test(secp256k1_ge *ge) {
+ secp256k1_fe fe;
do {
random_field_element_test(&fe);
if (secp256k1_ge_set_xo_var(ge, &fe, secp256k1_rand32() & 1)) {
+ secp256k1_fe_normalize(&ge->y);
break;
}
} while(1);
}
-void random_group_element_jacobian_test(secp256k1_gej_t *gej, const secp256k1_ge_t *ge) {
- secp256k1_fe_t z2, z3;
+void random_group_element_jacobian_test(secp256k1_gej *gej, const secp256k1_ge *ge) {
+ secp256k1_fe z2, z3;
do {
random_field_element_test(&gej->z);
if (!secp256k1_fe_is_zero(&gej->z)) {
@@ -76,7 +77,7 @@ void random_group_element_jacobian_test(secp256k1_gej_t *gej, const secp256k1_ge
gej->infinity = ge->infinity;
}
-void random_scalar_order_test(secp256k1_scalar_t *num) {
+void random_scalar_order_test(secp256k1_scalar *num) {
do {
unsigned char b32[32];
int overflow = 0;
@@ -89,7 +90,7 @@ void random_scalar_order_test(secp256k1_scalar_t *num) {
} while(1);
}
-void random_scalar_order(secp256k1_scalar_t *num) {
+void random_scalar_order(secp256k1_scalar *num) {
do {
unsigned char b32[32];
int overflow = 0;
@@ -102,6 +103,53 @@ void random_scalar_order(secp256k1_scalar_t *num) {
} while(1);
}
+void run_context_tests(void) {
+ secp256k1_context *none = secp256k1_context_create(0);
+ secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
+ secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
+ secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
+
+ secp256k1_gej pubj;
+ secp256k1_ge pub;
+ secp256k1_scalar msg, key, nonce;
+ secp256k1_scalar sigr, sigs;
+
+ /*** clone and destroy all of them to make sure cloning was complete ***/
+ {
+ secp256k1_context *ctx_tmp;
+
+ ctx_tmp = none; none = secp256k1_context_clone(none); secp256k1_context_destroy(ctx_tmp);
+ ctx_tmp = sign; sign = secp256k1_context_clone(sign); secp256k1_context_destroy(ctx_tmp);
+ ctx_tmp = vrfy; vrfy = secp256k1_context_clone(vrfy); secp256k1_context_destroy(ctx_tmp);
+ ctx_tmp = both; both = secp256k1_context_clone(both); secp256k1_context_destroy(ctx_tmp);
+ }
+
+ /*** attempt to use them ***/
+ random_scalar_order_test(&msg);
+ random_scalar_order_test(&key);
+ secp256k1_ecmult_gen(&both->ecmult_gen_ctx, &pubj, &key);
+ secp256k1_ge_set_gej(&pub, &pubj);
+
+ /* obtain a working nonce */
+ do {
+ random_scalar_order_test(&nonce);
+ } while(!secp256k1_ecdsa_sig_sign(&both->ecmult_gen_ctx, &sigr, &sigs, &key, &msg, &nonce, NULL));
+
+ /* try signing */
+ CHECK(secp256k1_ecdsa_sig_sign(&sign->ecmult_gen_ctx, &sigr, &sigs, &key, &msg, &nonce, NULL));
+ CHECK(secp256k1_ecdsa_sig_sign(&both->ecmult_gen_ctx, &sigr, &sigs, &key, &msg, &nonce, NULL));
+
+ /* try verifying */
+ CHECK(secp256k1_ecdsa_sig_verify(&vrfy->ecmult_ctx, &sigr, &sigs, &pub, &msg));
+ CHECK(secp256k1_ecdsa_sig_verify(&both->ecmult_ctx, &sigr, &sigs, &pub, &msg));
+
+ /* cleanup */
+ secp256k1_context_destroy(none);
+ secp256k1_context_destroy(sign);
+ secp256k1_context_destroy(vrfy);
+ secp256k1_context_destroy(both);
+}
+
/***** HASH TESTS *****/
void run_sha256_tests(void) {
@@ -185,16 +233,14 @@ void run_hmac_sha256_tests(void) {
}
void run_rfc6979_hmac_sha256_tests(void) {
- static const unsigned char key1[32] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x00};
- static const unsigned char msg1[32] = {0x4b, 0xf5, 0x12, 0x2f, 0x34, 0x45, 0x54, 0xc5, 0x3b, 0xde, 0x2e, 0xbb, 0x8c, 0xd2, 0xb7, 0xe3, 0xd1, 0x60, 0x0a, 0xd6, 0x31, 0xc3, 0x85, 0xa5, 0xd7, 0xcc, 0xe2, 0x3c, 0x77, 0x85, 0x45, 0x9a};
+ static const unsigned char key1[65] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x4b, 0xf5, 0x12, 0x2f, 0x34, 0x45, 0x54, 0xc5, 0x3b, 0xde, 0x2e, 0xbb, 0x8c, 0xd2, 0xb7, 0xe3, 0xd1, 0x60, 0x0a, 0xd6, 0x31, 0xc3, 0x85, 0xa5, 0xd7, 0xcc, 0xe2, 0x3c, 0x77, 0x85, 0x45, 0x9a, 0};
static const unsigned char out1[3][32] = {
{0x4f, 0xe2, 0x95, 0x25, 0xb2, 0x08, 0x68, 0x09, 0x15, 0x9a, 0xcd, 0xf0, 0x50, 0x6e, 0xfb, 0x86, 0xb0, 0xec, 0x93, 0x2c, 0x7b, 0xa4, 0x42, 0x56, 0xab, 0x32, 0x1e, 0x42, 0x1e, 0x67, 0xe9, 0xfb},
{0x2b, 0xf0, 0xff, 0xf1, 0xd3, 0xc3, 0x78, 0xa2, 0x2d, 0xc5, 0xde, 0x1d, 0x85, 0x65, 0x22, 0x32, 0x5c, 0x65, 0xb5, 0x04, 0x49, 0x1a, 0x0c, 0xbd, 0x01, 0xcb, 0x8f, 0x3a, 0xa6, 0x7f, 0xfd, 0x4a},
{0xf5, 0x28, 0xb4, 0x10, 0xcb, 0x54, 0x1f, 0x77, 0x00, 0x0d, 0x7a, 0xfb, 0x6c, 0x5b, 0x53, 0xc5, 0xc4, 0x71, 0xea, 0xb4, 0x3e, 0x46, 0x6d, 0x9a, 0xc5, 0x19, 0x0c, 0x39, 0xc8, 0x2f, 0xd8, 0x2e}
};
- static const unsigned char key2[32] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
- static const unsigned char msg2[32] = {0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55};
+ static const unsigned char key2[64] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55};
static const unsigned char out2[3][32] = {
{0x9c, 0x23, 0x6c, 0x16, 0x5b, 0x82, 0xae, 0x0c, 0xd5, 0x90, 0x65, 0x9e, 0x10, 0x0b, 0x6b, 0xab, 0x30, 0x36, 0xe7, 0xba, 0x8b, 0x06, 0x74, 0x9b, 0xaf, 0x69, 0x81, 0xe1, 0x6f, 0x1a, 0x2b, 0x95},
{0xdf, 0x47, 0x10, 0x61, 0x62, 0x5b, 0xc0, 0xea, 0x14, 0xb6, 0x82, 0xfe, 0xee, 0x2c, 0x9c, 0x02, 0xf2, 0x35, 0xda, 0x04, 0x20, 0x4c, 0x1d, 0x62, 0xa1, 0x53, 0x6c, 0x6e, 0x17, 0xae, 0xd7, 0xa9},
@@ -203,24 +249,23 @@ void run_rfc6979_hmac_sha256_tests(void) {
secp256k1_rfc6979_hmac_sha256_t rng;
unsigned char out[32];
- unsigned char zero[1] = {0};
int i;
- secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 32, msg1, 32, NULL, 1);
+ secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 64);
for (i = 0; i < 3; i++) {
secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32);
CHECK(memcmp(out, out1[i], 32) == 0);
}
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
- secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 32, msg1, 32, zero, 1);
+ secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 65);
for (i = 0; i < 3; i++) {
secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32);
CHECK(memcmp(out, out1[i], 32) != 0);
}
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
- secp256k1_rfc6979_hmac_sha256_initialize(&rng, key2, 32, msg2, 32, zero, 0);
+ secp256k1_rfc6979_hmac_sha256_initialize(&rng, key2, 64);
for (i = 0; i < 3; i++) {
secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32);
CHECK(memcmp(out, out2[i], 32) == 0);
@@ -231,27 +276,27 @@ void run_rfc6979_hmac_sha256_tests(void) {
/***** NUM TESTS *****/
#ifndef USE_NUM_NONE
-void random_num_negate(secp256k1_num_t *num) {
+void random_num_negate(secp256k1_num *num) {
if (secp256k1_rand32() & 1) {
secp256k1_num_negate(num);
}
}
-void random_num_order_test(secp256k1_num_t *num) {
- secp256k1_scalar_t sc;
+void random_num_order_test(secp256k1_num *num) {
+ secp256k1_scalar sc;
random_scalar_order_test(&sc);
secp256k1_scalar_get_num(num, &sc);
}
-void random_num_order(secp256k1_num_t *num) {
- secp256k1_scalar_t sc;
+void random_num_order(secp256k1_num *num) {
+ secp256k1_scalar sc;
random_scalar_order(&sc);
secp256k1_scalar_get_num(num, &sc);
}
void test_num_negate(void) {
- secp256k1_num_t n1;
- secp256k1_num_t n2;
+ secp256k1_num n1;
+ secp256k1_num n2;
random_num_order_test(&n1); /* n1 = R */
random_num_negate(&n1);
secp256k1_num_copy(&n2, &n1); /* n2 = R */
@@ -270,9 +315,9 @@ void test_num_negate(void) {
}
void test_num_add_sub(void) {
- secp256k1_num_t n1;
- secp256k1_num_t n2;
- secp256k1_num_t n1p2, n2p1, n1m2, n2m1;
+ secp256k1_num n1;
+ secp256k1_num n2;
+ secp256k1_num n1p2, n2p1, n1m2, n2m1;
int r = secp256k1_rand32();
random_num_order_test(&n1); /* n1 = R1 */
if (r & 1) {
@@ -310,12 +355,12 @@ void run_num_smalltests(void) {
/***** SCALAR TESTS *****/
void scalar_test(void) {
- secp256k1_scalar_t s;
- secp256k1_scalar_t s1;
- secp256k1_scalar_t s2;
+ secp256k1_scalar s;
+ secp256k1_scalar s1;
+ secp256k1_scalar s2;
#ifndef USE_NUM_NONE
- secp256k1_num_t snum, s1num, s2num;
- secp256k1_num_t order, half_order;
+ secp256k1_num snum, s1num, s2num;
+ secp256k1_num order, half_order;
#endif
unsigned char c[32];
@@ -342,10 +387,10 @@ void scalar_test(void) {
{
int i;
/* Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it. */
- secp256k1_scalar_t n;
+ secp256k1_scalar n;
secp256k1_scalar_set_int(&n, 0);
for (i = 0; i < 256; i += 4) {
- secp256k1_scalar_t t;
+ secp256k1_scalar t;
int j;
secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits(&s, 256 - 4 - i, 4));
for (j = 0; j < 4; j++) {
@@ -358,11 +403,11 @@ void scalar_test(void) {
{
/* Test that fetching groups of randomly-sized bits from a scalar and recursing n(i)=b*n(i-1)+p(i) reconstructs it. */
- secp256k1_scalar_t n;
+ secp256k1_scalar n;
int i = 0;
secp256k1_scalar_set_int(&n, 0);
while (i < 256) {
- secp256k1_scalar_t t;
+ secp256k1_scalar t;
int j;
int now = (secp256k1_rand32() % 15) + 1;
if (now + i > 256) {
@@ -381,9 +426,9 @@ void scalar_test(void) {
#ifndef USE_NUM_NONE
{
/* Test that adding the scalars together is equal to adding their numbers together modulo the order. */
- secp256k1_num_t rnum;
- secp256k1_num_t r2num;
- secp256k1_scalar_t r;
+ secp256k1_num rnum;
+ secp256k1_num r2num;
+ secp256k1_scalar r;
secp256k1_num_add(&rnum, &snum, &s2num);
secp256k1_num_mod(&rnum, &order);
secp256k1_scalar_add(&r, &s, &s2);
@@ -393,9 +438,9 @@ void scalar_test(void) {
{
/* Test that multipying the scalars is equal to multiplying their numbers modulo the order. */
- secp256k1_scalar_t r;
- secp256k1_num_t r2num;
- secp256k1_num_t rnum;
+ secp256k1_scalar r;
+ secp256k1_num r2num;
+ secp256k1_num rnum;
secp256k1_num_mul(&rnum, &snum, &s2num);
secp256k1_num_mod(&rnum, &order);
secp256k1_scalar_mul(&r, &s, &s2);
@@ -409,9 +454,9 @@ void scalar_test(void) {
}
{
- secp256k1_scalar_t neg;
- secp256k1_num_t negnum;
- secp256k1_num_t negnum2;
+ secp256k1_scalar neg;
+ secp256k1_num negnum;
+ secp256k1_num negnum2;
/* Check that comparison with zero matches comparison with zero on the number. */
CHECK(secp256k1_num_is_zero(&snum) == secp256k1_scalar_is_zero(&s));
/* Check that comparison with the half order is equal to testing for high scalar. */
@@ -436,10 +481,10 @@ void scalar_test(void) {
{
/* Test secp256k1_scalar_mul_shift_var. */
- secp256k1_scalar_t r;
- secp256k1_num_t one;
- secp256k1_num_t rnum;
- secp256k1_num_t rnum2;
+ secp256k1_scalar r;
+ secp256k1_num one;
+ secp256k1_num rnum;
+ secp256k1_num rnum2;
unsigned char cone[1] = {0x01};
unsigned int shift = 256 + (secp256k1_rand32() % 257);
secp256k1_scalar_mul_shift_var(&r, &s1, &s2, shift);
@@ -451,15 +496,29 @@ void scalar_test(void) {
secp256k1_scalar_get_num(&rnum2, &r);
CHECK(secp256k1_num_eq(&rnum, &rnum2));
}
+
+ {
+ /* test secp256k1_scalar_shr_int */
+ secp256k1_scalar r;
+ int i;
+ random_scalar_order_test(&r);
+ for (i = 0; i < 100; ++i) {
+ int low;
+ int shift = 1 + (secp256k1_rand32() % 15);
+ int expected = r.d[0] % (1 << shift);
+ low = secp256k1_scalar_shr_int(&r, shift);
+ CHECK(expected == low);
+ }
+ }
#endif
{
/* Test that scalar inverses are equal to the inverse of their number modulo the order. */
if (!secp256k1_scalar_is_zero(&s)) {
- secp256k1_scalar_t inv;
+ secp256k1_scalar inv;
#ifndef USE_NUM_NONE
- secp256k1_num_t invnum;
- secp256k1_num_t invnum2;
+ secp256k1_num invnum;
+ secp256k1_num invnum2;
#endif
secp256k1_scalar_inverse(&inv, &s);
#ifndef USE_NUM_NONE
@@ -478,15 +537,15 @@ void scalar_test(void) {
{
/* Test commutativity of add. */
- secp256k1_scalar_t r1, r2;
+ secp256k1_scalar r1, r2;
secp256k1_scalar_add(&r1, &s1, &s2);
secp256k1_scalar_add(&r2, &s2, &s1);
CHECK(secp256k1_scalar_eq(&r1, &r2));
}
{
- secp256k1_scalar_t r1, r2;
- secp256k1_scalar_t b;
+ secp256k1_scalar r1, r2;
+ secp256k1_scalar b;
int i;
/* Test add_bit. */
int bit = secp256k1_rand32() % 256;
@@ -499,14 +558,17 @@ void scalar_test(void) {
r2 = s1;
if (!secp256k1_scalar_add(&r1, &r1, &b)) {
/* No overflow happened. */
- secp256k1_scalar_add_bit(&r2, bit);
+ secp256k1_scalar_cadd_bit(&r2, bit, 1);
+ CHECK(secp256k1_scalar_eq(&r1, &r2));
+ /* cadd is a noop when flag is zero */
+ secp256k1_scalar_cadd_bit(&r2, bit, 0);
CHECK(secp256k1_scalar_eq(&r1, &r2));
}
}
{
/* Test commutativity of mul. */
- secp256k1_scalar_t r1, r2;
+ secp256k1_scalar r1, r2;
secp256k1_scalar_mul(&r1, &s1, &s2);
secp256k1_scalar_mul(&r2, &s2, &s1);
CHECK(secp256k1_scalar_eq(&r1, &r2));
@@ -514,7 +576,7 @@ void scalar_test(void) {
{
/* Test associativity of add. */
- secp256k1_scalar_t r1, r2;
+ secp256k1_scalar r1, r2;
secp256k1_scalar_add(&r1, &s1, &s2);
secp256k1_scalar_add(&r1, &r1, &s);
secp256k1_scalar_add(&r2, &s2, &s);
@@ -524,7 +586,7 @@ void scalar_test(void) {
{
/* Test associativity of mul. */
- secp256k1_scalar_t r1, r2;
+ secp256k1_scalar r1, r2;
secp256k1_scalar_mul(&r1, &s1, &s2);
secp256k1_scalar_mul(&r1, &r1, &s);
secp256k1_scalar_mul(&r2, &s2, &s);
@@ -534,7 +596,7 @@ void scalar_test(void) {
{
/* Test distributitivity of mul over add. */
- secp256k1_scalar_t r1, r2, t;
+ secp256k1_scalar r1, r2, t;
secp256k1_scalar_add(&r1, &s1, &s2);
secp256k1_scalar_mul(&r1, &r1, &s);
secp256k1_scalar_mul(&r2, &s1, &s);
@@ -545,7 +607,7 @@ void scalar_test(void) {
{
/* Test square. */
- secp256k1_scalar_t r1, r2;
+ secp256k1_scalar r1, r2;
secp256k1_scalar_sqr(&r1, &s1);
secp256k1_scalar_mul(&r2, &s1, &s1);
CHECK(secp256k1_scalar_eq(&r1, &r2));
@@ -553,7 +615,7 @@ void scalar_test(void) {
{
/* Test multiplicative identity. */
- secp256k1_scalar_t r1, v1;
+ secp256k1_scalar r1, v1;
secp256k1_scalar_set_int(&v1,1);
secp256k1_scalar_mul(&r1, &s1, &v1);
CHECK(secp256k1_scalar_eq(&r1, &s1));
@@ -561,7 +623,7 @@ void scalar_test(void) {
{
/* Test additive identity. */
- secp256k1_scalar_t r1, v0;
+ secp256k1_scalar r1, v0;
secp256k1_scalar_set_int(&v0,0);
secp256k1_scalar_add(&r1, &s1, &v0);
CHECK(secp256k1_scalar_eq(&r1, &s1));
@@ -569,7 +631,7 @@ void scalar_test(void) {
{
/* Test zero product property. */
- secp256k1_scalar_t r1, v0;
+ secp256k1_scalar r1, v0;
secp256k1_scalar_set_int(&v0,0);
secp256k1_scalar_mul(&r1, &s1, &v0);
CHECK(secp256k1_scalar_eq(&r1, &v0));
@@ -585,7 +647,7 @@ void run_scalar_tests(void) {
{
/* (-1)+1 should be zero. */
- secp256k1_scalar_t s, o;
+ secp256k1_scalar s, o;
secp256k1_scalar_set_int(&s, 1);
CHECK(secp256k1_scalar_is_one(&s));
secp256k1_scalar_negate(&o, &s);
@@ -598,8 +660,8 @@ void run_scalar_tests(void) {
#ifndef USE_NUM_NONE
{
/* A scalar with value of the curve order should be 0. */
- secp256k1_num_t order;
- secp256k1_scalar_t zero;
+ secp256k1_num order;
+ secp256k1_scalar zero;
unsigned char bin[32];
int overflow = 0;
secp256k1_scalar_order_get_num(&order);
@@ -613,7 +675,7 @@ void run_scalar_tests(void) {
/***** FIELD TESTS *****/
-void random_fe(secp256k1_fe_t *x) {
+void random_fe(secp256k1_fe *x) {
unsigned char bin[32];
do {
secp256k1_rand256(bin);
@@ -623,7 +685,7 @@ void random_fe(secp256k1_fe_t *x) {
} while(1);
}
-void random_fe_non_zero(secp256k1_fe_t *nz) {
+void random_fe_non_zero(secp256k1_fe *nz) {
int tries = 10;
while (--tries >= 0) {
random_fe(nz);
@@ -636,25 +698,25 @@ void random_fe_non_zero(secp256k1_fe_t *nz) {
CHECK(tries >= 0);
}
-void random_fe_non_square(secp256k1_fe_t *ns) {
- secp256k1_fe_t r;
+void random_fe_non_square(secp256k1_fe *ns) {
+ secp256k1_fe r;
random_fe_non_zero(ns);
if (secp256k1_fe_sqrt_var(&r, ns)) {
secp256k1_fe_negate(ns, ns, 1);
}
}
-int check_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
- secp256k1_fe_t an = *a;
- secp256k1_fe_t bn = *b;
+int check_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
+ secp256k1_fe an = *a;
+ secp256k1_fe bn = *b;
secp256k1_fe_normalize_weak(&an);
secp256k1_fe_normalize_var(&bn);
return secp256k1_fe_equal_var(&an, &bn);
}
-int check_fe_inverse(const secp256k1_fe_t *a, const secp256k1_fe_t *ai) {
- secp256k1_fe_t x;
- secp256k1_fe_t one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
+int check_fe_inverse(const secp256k1_fe *a, const secp256k1_fe *ai) {
+ secp256k1_fe x;
+ secp256k1_fe one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
secp256k1_fe_mul(&x, a, ai);
return check_fe_equal(&x, &one);
}
@@ -666,17 +728,17 @@ void run_field_convert(void) {
0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29,
0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x40
};
- static const secp256k1_fe_storage_t fes = SECP256K1_FE_STORAGE_CONST(
+ static const secp256k1_fe_storage fes = SECP256K1_FE_STORAGE_CONST(
0x00010203UL, 0x04050607UL, 0x11121314UL, 0x15161718UL,
0x22232425UL, 0x26272829UL, 0x33343536UL, 0x37383940UL
);
- static const secp256k1_fe_t fe = SECP256K1_FE_CONST(
+ static const secp256k1_fe fe = SECP256K1_FE_CONST(
0x00010203UL, 0x04050607UL, 0x11121314UL, 0x15161718UL,
0x22232425UL, 0x26272829UL, 0x33343536UL, 0x37383940UL
);
- secp256k1_fe_t fe2;
+ secp256k1_fe fe2;
unsigned char b322[32];
- secp256k1_fe_storage_t fes2;
+ secp256k1_fe_storage fes2;
/* Check conversions to fe. */
CHECK(secp256k1_fe_set_b32(&fe2, b32));
CHECK(secp256k1_fe_equal_var(&fe, &fe2));
@@ -689,15 +751,24 @@ void run_field_convert(void) {
CHECK(memcmp(&fes2, &fes, sizeof(fes)) == 0);
}
+int fe_memcmp(const secp256k1_fe *a, const secp256k1_fe *b) {
+ secp256k1_fe t = *b;
+#ifdef VERIFY
+ t.magnitude = a->magnitude;
+ t.normalized = a->normalized;
+#endif
+ return memcmp(a, &t, sizeof(secp256k1_fe));
+}
+
void run_field_misc(void) {
- secp256k1_fe_t x;
- secp256k1_fe_t y;
- secp256k1_fe_t z;
- secp256k1_fe_t q;
- secp256k1_fe_t fe5 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 5);
- int i;
+ secp256k1_fe x;
+ secp256k1_fe y;
+ secp256k1_fe z;
+ secp256k1_fe q;
+ secp256k1_fe fe5 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 5);
+ int i, j;
for (i = 0; i < 5*count; i++) {
- secp256k1_fe_storage_t xs, ys, zs;
+ secp256k1_fe_storage xs, ys, zs;
random_fe(&x);
random_fe_non_zero(&y);
/* Test the fe equality and comparison operations. */
@@ -705,12 +776,35 @@ void run_field_misc(void) {
CHECK(secp256k1_fe_equal_var(&x, &x));
z = x;
secp256k1_fe_add(&z,&y);
- secp256k1_fe_normalize(&z);
+ /* Test fe conditional move; z is not normalized here. */
+ q = x;
+ secp256k1_fe_cmov(&x, &z, 0);
+ VERIFY_CHECK(!x.normalized && x.magnitude == z.magnitude);
+ secp256k1_fe_cmov(&x, &x, 1);
+ CHECK(fe_memcmp(&x, &z) != 0);
+ CHECK(fe_memcmp(&x, &q) == 0);
+ secp256k1_fe_cmov(&q, &z, 1);
+ VERIFY_CHECK(!q.normalized && q.magnitude == z.magnitude);
+ CHECK(fe_memcmp(&q, &z) == 0);
+ secp256k1_fe_normalize_var(&x);
+ secp256k1_fe_normalize_var(&z);
+ CHECK(!secp256k1_fe_equal_var(&x, &z));
+ secp256k1_fe_normalize_var(&q);
+ secp256k1_fe_cmov(&q, &z, (i&1));
+ VERIFY_CHECK(q.normalized && q.magnitude == 1);
+ for (j = 0; j < 6; j++) {
+ secp256k1_fe_negate(&z, &z, j+1);
+ secp256k1_fe_normalize_var(&q);
+ secp256k1_fe_cmov(&q, &z, (j&1));
+ VERIFY_CHECK(!q.normalized && q.magnitude == (j+2));
+ }
+ secp256k1_fe_normalize_var(&z);
/* Test storage conversion and conditional moves. */
secp256k1_fe_to_storage(&xs, &x);
secp256k1_fe_to_storage(&ys, &y);
secp256k1_fe_to_storage(&zs, &z);
secp256k1_fe_storage_cmov(&zs, &xs, 0);
+ secp256k1_fe_storage_cmov(&zs, &zs, 1);
CHECK(memcmp(&xs, &zs, sizeof(xs)) != 0);
secp256k1_fe_storage_cmov(&ys, &xs, 1);
CHECK(memcmp(&xs, &ys, sizeof(xs)) == 0);
@@ -739,7 +833,7 @@ void run_field_misc(void) {
}
void run_field_inv(void) {
- secp256k1_fe_t x, xi, xii;
+ secp256k1_fe x, xi, xii;
int i;
for (i = 0; i < 10*count; i++) {
random_fe_non_zero(&x);
@@ -751,7 +845,7 @@ void run_field_inv(void) {
}
void run_field_inv_var(void) {
- secp256k1_fe_t x, xi, xii;
+ secp256k1_fe x, xi, xii;
int i;
for (i = 0; i < 10*count; i++) {
random_fe_non_zero(&x);
@@ -763,7 +857,7 @@ void run_field_inv_var(void) {
}
void run_field_inv_all_var(void) {
- secp256k1_fe_t x[16], xi[16], xii[16];
+ secp256k1_fe x[16], xi[16], xii[16];
int i;
/* Check it's safe to call for 0 elements */
secp256k1_fe_inv_all_var(0, xi, x);
@@ -785,7 +879,7 @@ void run_field_inv_all_var(void) {
}
void run_sqr(void) {
- secp256k1_fe_t x, s;
+ secp256k1_fe x, s;
{
int i;
@@ -800,8 +894,8 @@ void run_sqr(void) {
}
}
-void test_sqrt(const secp256k1_fe_t *a, const secp256k1_fe_t *k) {
- secp256k1_fe_t r1, r2;
+void test_sqrt(const secp256k1_fe *a, const secp256k1_fe *k) {
+ secp256k1_fe r1, r2;
int v = secp256k1_fe_sqrt_var(&r1, a);
CHECK((v == 0) == (k == NULL));
@@ -815,7 +909,7 @@ void test_sqrt(const secp256k1_fe_t *a, const secp256k1_fe_t *k) {
}
void run_sqrt(void) {
- secp256k1_fe_t ns, x, s, t;
+ secp256k1_fe ns, x, s, t;
int i;
/* Check sqrt(0) is 0 */
@@ -850,18 +944,40 @@ void run_sqrt(void) {
/***** GROUP TESTS *****/
-void ge_equals_ge(const secp256k1_ge_t *a, const secp256k1_ge_t *b) {
+void ge_equals_ge(const secp256k1_ge *a, const secp256k1_ge *b) {
CHECK(a->infinity == b->infinity);
if (a->infinity) {
return;
}
CHECK(secp256k1_fe_equal_var(&a->x, &b->x));
- CHECK(secp256k1_fe_equal_var(&b->y, &b->y));
+ CHECK(secp256k1_fe_equal_var(&a->y, &b->y));
}
-void ge_equals_gej(const secp256k1_ge_t *a, const secp256k1_gej_t *b) {
- secp256k1_fe_t z2s;
- secp256k1_fe_t u1, u2, s1, s2;
+/* This compares jacobian points including their Z, not just their geometric meaning. */
+int gej_xyz_equals_gej(const secp256k1_gej *a, const secp256k1_gej *b) {
+ secp256k1_gej a2;
+ secp256k1_gej b2;
+ int ret = 1;
+ ret &= a->infinity == b->infinity;
+ if (ret && !a->infinity) {
+ a2 = *a;
+ b2 = *b;
+ secp256k1_fe_normalize(&a2.x);
+ secp256k1_fe_normalize(&a2.y);
+ secp256k1_fe_normalize(&a2.z);
+ secp256k1_fe_normalize(&b2.x);
+ secp256k1_fe_normalize(&b2.y);
+ secp256k1_fe_normalize(&b2.z);
+ ret &= secp256k1_fe_cmp_var(&a2.x, &b2.x) == 0;
+ ret &= secp256k1_fe_cmp_var(&a2.y, &b2.y) == 0;
+ ret &= secp256k1_fe_cmp_var(&a2.z, &b2.z) == 0;
+ }
+ return ret;
+}
+
+void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b) {
+ secp256k1_fe z2s;
+ secp256k1_fe u1, u2, s1, s2;
CHECK(a->infinity == b->infinity);
if (a->infinity) {
return;
@@ -878,21 +994,39 @@ void ge_equals_gej(const secp256k1_ge_t *a, const secp256k1_gej_t *b) {
void test_ge(void) {
int i, i1;
+#ifdef USE_ENDOMORPHISM
+ int runs = 6;
+#else
int runs = 4;
+#endif
/* Points: (infinity, p1, p1, -p1, -p1, p2, p2, -p2, -p2, p3, p3, -p3, -p3, p4, p4, -p4, -p4).
* The second in each pair of identical points uses a random Z coordinate in the Jacobian form.
* All magnitudes are randomized.
* All 17*17 combinations of points are added to eachother, using all applicable methods.
+ *
+ * When the endomorphism code is compiled in, p5 = lambda*p1 and p6 = lambda^2*p1 are added as well.
*/
- secp256k1_ge_t *ge = (secp256k1_ge_t *)malloc(sizeof(secp256k1_ge_t) * (1 + 4 * runs));
- secp256k1_gej_t *gej = (secp256k1_gej_t *)malloc(sizeof(secp256k1_gej_t) * (1 + 4 * runs));
+ secp256k1_ge *ge = (secp256k1_ge *)malloc(sizeof(secp256k1_ge) * (1 + 4 * runs));
+ secp256k1_gej *gej = (secp256k1_gej *)malloc(sizeof(secp256k1_gej) * (1 + 4 * runs));
+ secp256k1_fe *zinv = (secp256k1_fe *)malloc(sizeof(secp256k1_fe) * (1 + 4 * runs));
+ secp256k1_fe zf;
+ secp256k1_fe zfi2, zfi3;
+
secp256k1_gej_set_infinity(&gej[0]);
secp256k1_ge_clear(&ge[0]);
secp256k1_ge_set_gej_var(&ge[0], &gej[0]);
for (i = 0; i < runs; i++) {
int j;
- secp256k1_ge_t g;
+ secp256k1_ge g;
random_group_element_test(&g);
+#ifdef USE_ENDOMORPHISM
+ if (i >= runs - 2) {
+ secp256k1_ge_mul_lambda(&g, &ge[1]);
+ }
+ if (i >= runs - 1) {
+ secp256k1_ge_mul_lambda(&g, &g);
+ }
+#endif
ge[1 + 4 * i] = g;
ge[2 + 4 * i] = g;
secp256k1_ge_neg(&ge[3 + 4 * i], &g);
@@ -910,18 +1044,65 @@ void test_ge(void) {
}
}
+ /* Compute z inverses. */
+ {
+ secp256k1_fe *zs = malloc(sizeof(secp256k1_fe) * (1 + 4 * runs));
+ for (i = 0; i < 4 * runs + 1; i++) {
+ if (i == 0) {
+ /* The point at infinity does not have a meaningful z inverse. Any should do. */
+ do {
+ random_field_element_test(&zs[i]);
+ } while(secp256k1_fe_is_zero(&zs[i]));
+ } else {
+ zs[i] = gej[i].z;
+ }
+ }
+ secp256k1_fe_inv_all_var(4 * runs + 1, zinv, zs);
+ free(zs);
+ }
+
+ /* Generate random zf, and zfi2 = 1/zf^2, zfi3 = 1/zf^3 */
+ do {
+ random_field_element_test(&zf);
+ } while(secp256k1_fe_is_zero(&zf));
+ random_field_element_magnitude(&zf);
+ secp256k1_fe_inv_var(&zfi3, &zf);
+ secp256k1_fe_sqr(&zfi2, &zfi3);
+ secp256k1_fe_mul(&zfi3, &zfi3, &zfi2);
+
for (i1 = 0; i1 < 1 + 4 * runs; i1++) {
int i2;
for (i2 = 0; i2 < 1 + 4 * runs; i2++) {
/* Compute reference result using gej + gej (var). */
- secp256k1_gej_t refj, resj;
- secp256k1_ge_t ref;
- secp256k1_gej_add_var(&refj, &gej[i1], &gej[i2]);
+ secp256k1_gej refj, resj;
+ secp256k1_ge ref;
+ secp256k1_fe zr;
+ secp256k1_gej_add_var(&refj, &gej[i1], &gej[i2], secp256k1_gej_is_infinity(&gej[i1]) ? NULL : &zr);
+ /* Check Z ratio. */
+ if (!secp256k1_gej_is_infinity(&gej[i1]) && !secp256k1_gej_is_infinity(&refj)) {
+ secp256k1_fe zrz; secp256k1_fe_mul(&zrz, &zr, &gej[i1].z);
+ CHECK(secp256k1_fe_equal_var(&zrz, &refj.z));
+ }
secp256k1_ge_set_gej_var(&ref, &refj);
- /* Test gej + ge (var). */
- secp256k1_gej_add_ge_var(&resj, &gej[i1], &ge[i2]);
+ /* Test gej + ge with Z ratio result (var). */
+ secp256k1_gej_add_ge_var(&resj, &gej[i1], &ge[i2], secp256k1_gej_is_infinity(&gej[i1]) ? NULL : &zr);
ge_equals_gej(&ref, &resj);
+ if (!secp256k1_gej_is_infinity(&gej[i1]) && !secp256k1_gej_is_infinity(&resj)) {
+ secp256k1_fe zrz; secp256k1_fe_mul(&zrz, &zr, &gej[i1].z);
+ CHECK(secp256k1_fe_equal_var(&zrz, &resj.z));
+ }
+
+ /* Test gej + ge (var, with additional Z factor). */
+ {
+ secp256k1_ge ge2_zfi = ge[i2]; /* the second term with x and y rescaled for z = 1/zf */
+ secp256k1_fe_mul(&ge2_zfi.x, &ge2_zfi.x, &zfi2);
+ secp256k1_fe_mul(&ge2_zfi.y, &ge2_zfi.y, &zfi3);
+ random_field_element_magnitude(&ge2_zfi.x);
+ random_field_element_magnitude(&ge2_zfi.y);
+ secp256k1_gej_add_zinv_var(&resj, &gej[i1], &ge2_zfi, &zf);
+ ge_equals_gej(&ref, &resj);
+ }
/* Test gej + ge (const). */
if (i2 != 0) {
@@ -932,10 +1113,15 @@ void test_ge(void) {
/* Test doubling (var). */
if ((i1 == 0 && i2 == 0) || ((i1 + 3)/4 == (i2 + 3)/4 && ((i1 + 3)%4)/2 == ((i2 + 3)%4)/2)) {
- /* Normal doubling. */
- secp256k1_gej_double_var(&resj, &gej[i1]);
+ secp256k1_fe zr2;
+ /* Normal doubling with Z ratio result. */
+ secp256k1_gej_double_var(&resj, &gej[i1], &zr2);
ge_equals_gej(&ref, &resj);
- secp256k1_gej_double_var(&resj, &gej[i2]);
+ /* Check Z ratio. */
+ secp256k1_fe_mul(&zr2, &zr2, &gej[i1].z);
+ CHECK(secp256k1_fe_equal_var(&zr2, &resj.z));
+ /* Normal doubling. */
+ secp256k1_gej_double_var(&resj, &gej[i2], NULL);
ge_equals_gej(&ref, &resj);
}
@@ -960,38 +1146,121 @@ void test_ge(void) {
/* Test adding all points together in random order equals infinity. */
{
- secp256k1_gej_t sum = SECP256K1_GEJ_CONST_INFINITY;
- secp256k1_gej_t *gej_shuffled = (secp256k1_gej_t *)malloc((4 * runs + 1) * sizeof(secp256k1_gej_t));
+ secp256k1_gej sum = SECP256K1_GEJ_CONST_INFINITY;
+ secp256k1_gej *gej_shuffled = (secp256k1_gej *)malloc((4 * runs + 1) * sizeof(secp256k1_gej));
for (i = 0; i < 4 * runs + 1; i++) {
gej_shuffled[i] = gej[i];
}
for (i = 0; i < 4 * runs + 1; i++) {
int swap = i + secp256k1_rand32() % (4 * runs + 1 - i);
if (swap != i) {
- secp256k1_gej_t t = gej_shuffled[i];
+ secp256k1_gej t = gej_shuffled[i];
gej_shuffled[i] = gej_shuffled[swap];
gej_shuffled[swap] = t;
}
}
for (i = 0; i < 4 * runs + 1; i++) {
- secp256k1_gej_add_var(&sum, &sum, &gej_shuffled[i]);
+ secp256k1_gej_add_var(&sum, &sum, &gej_shuffled[i], NULL);
}
CHECK(secp256k1_gej_is_infinity(&sum));
free(gej_shuffled);
}
- /* Test batch gej -> ge conversion. */
+ /* Test batch gej -> ge conversion with and without known z ratios. */
{
- secp256k1_ge_t *ge_set_all = (secp256k1_ge_t *)malloc((4 * runs + 1) * sizeof(secp256k1_ge_t));
- secp256k1_ge_set_all_gej_var(4 * runs + 1, ge_set_all, gej);
+ secp256k1_fe *zr = (secp256k1_fe *)malloc((4 * runs + 1) * sizeof(secp256k1_fe));
+ secp256k1_ge *ge_set_table = (secp256k1_ge *)malloc((4 * runs + 1) * sizeof(secp256k1_ge));
+ secp256k1_ge *ge_set_all = (secp256k1_ge *)malloc((4 * runs + 1) * sizeof(secp256k1_ge));
+ for (i = 0; i < 4 * runs + 1; i++) {
+ /* Compute gej[i + 1].z / gez[i].z (with gej[n].z taken to be 1). */
+ if (i < 4 * runs) {
+ secp256k1_fe_mul(&zr[i + 1], &zinv[i], &gej[i + 1].z);
+ }
+ }
+ secp256k1_ge_set_table_gej_var(4 * runs + 1, ge_set_table, gej, zr);
+ secp256k1_ge_set_all_gej_var(4 * runs + 1, ge_set_all, gej, &ctx->error_callback);
for (i = 0; i < 4 * runs + 1; i++) {
+ secp256k1_fe s;
+ random_fe_non_zero(&s);
+ secp256k1_gej_rescale(&gej[i], &s);
+ ge_equals_gej(&ge_set_table[i], &gej[i]);
ge_equals_gej(&ge_set_all[i], &gej[i]);
}
+ free(ge_set_table);
free(ge_set_all);
+ free(zr);
}
free(ge);
free(gej);
+ free(zinv);
+}
+
+void test_add_neg_y_diff_x(void) {
+ /* The point of this test is to check that we can add two points
+ * whose y-coordinates are negatives of each other but whose x
+ * coordinates differ. If the x-coordinates were the same, these
+ * points would be negatives of each other and their sum is
+ * infinity. This is cool because it "covers up" any degeneracy
+ * in the addition algorithm that would cause the xy coordinates
+ * of the sum to be wrong (since infinity has no xy coordinates).
+ * HOWEVER, if the x-coordinates are different, infinity is the
+ * wrong answer, and such degeneracies are exposed. This is the
+ * root of https://github.com/bitcoin/secp256k1/issues/257 which
+ * this test is a regression test for.
+ *
+ * These points were generated in sage as
+ * # secp256k1 params
+ * F = FiniteField (0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F)
+ * C = EllipticCurve ([F (0), F (7)])
+ * G = C.lift_x(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798)
+ * N = FiniteField(G.order())
+ *
+ * # endomorphism values (lambda is 1^{1/3} in N, beta is 1^{1/3} in F)
+ * x = polygen(N)
+ * lam = (1 - x^3).roots()[1][0]
+ *
+ * # random "bad pair"
+ * P = C.random_element()
+ * Q = -int(lam) * P
+ * print " P: %x %x" % P.xy()
+ * print " Q: %x %x" % Q.xy()
+ * print "P + Q: %x %x" % (P + Q).xy()
+ */
+ secp256k1_gej aj = SECP256K1_GEJ_CONST(
+ 0x8d24cd95, 0x0a355af1, 0x3c543505, 0x44238d30,
+ 0x0643d79f, 0x05a59614, 0x2f8ec030, 0xd58977cb,
+ 0x001e337a, 0x38093dcd, 0x6c0f386d, 0x0b1293a8,
+ 0x4d72c879, 0xd7681924, 0x44e6d2f3, 0x9190117d
+ );
+ secp256k1_gej bj = SECP256K1_GEJ_CONST(
+ 0xc7b74206, 0x1f788cd9, 0xabd0937d, 0x164a0d86,
+ 0x95f6ff75, 0xf19a4ce9, 0xd013bd7b, 0xbf92d2a7,
+ 0xffe1cc85, 0xc7f6c232, 0x93f0c792, 0xf4ed6c57,
+ 0xb28d3786, 0x2897e6db, 0xbb192d0b, 0x6e6feab2
+ );
+ secp256k1_gej sumj = SECP256K1_GEJ_CONST(
+ 0x671a63c0, 0x3efdad4c, 0x389a7798, 0x24356027,
+ 0xb3d69010, 0x278625c3, 0x5c86d390, 0x184a8f7a,
+ 0x5f6409c2, 0x2ce01f2b, 0x511fd375, 0x25071d08,
+ 0xda651801, 0x70e95caf, 0x8f0d893c, 0xbed8fbbe
+ );
+ secp256k1_ge b;
+ secp256k1_gej resj;
+ secp256k1_ge res;
+ secp256k1_ge_set_gej(&b, &bj);
+
+ secp256k1_gej_add_var(&resj, &aj, &bj, NULL);
+ secp256k1_ge_set_gej(&res, &resj);
+ ge_equals_gej(&res, &sumj);
+
+ secp256k1_gej_add_ge(&resj, &aj, &b);
+ secp256k1_ge_set_gej(&res, &resj);
+ ge_equals_gej(&res, &sumj);
+
+ secp256k1_gej_add_ge_var(&resj, &aj, &b, NULL);
+ secp256k1_ge_set_gej(&res, &resj);
+ ge_equals_gej(&res, &sumj);
}
void run_ge(void) {
@@ -999,43 +1268,76 @@ void run_ge(void) {
for (i = 0; i < count * 32; i++) {
test_ge();
}
+ test_add_neg_y_diff_x();
+}
+
+void test_ec_combine(void) {
+ secp256k1_scalar sum = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
+ secp256k1_pubkey data[6];
+ const secp256k1_pubkey* d[6];
+ secp256k1_pubkey sd;
+ secp256k1_pubkey sd2;
+ secp256k1_gej Qj;
+ secp256k1_ge Q;
+ int i;
+ for (i = 1; i <= 6; i++) {
+ secp256k1_scalar s;
+ random_scalar_order_test(&s);
+ secp256k1_scalar_add(&sum, &sum, &s);
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &Qj, &s);
+ secp256k1_ge_set_gej(&Q, &Qj);
+ secp256k1_pubkey_save(&data[i - 1], &Q);
+ d[i - 1] = &data[i - 1];
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &Qj, &sum);
+ secp256k1_ge_set_gej(&Q, &Qj);
+ secp256k1_pubkey_save(&sd, &Q);
+ CHECK(secp256k1_ec_pubkey_combine(ctx, &sd2, d, i) == 1);
+ CHECK(memcmp(&sd, &sd2, sizeof(sd)) == 0);
+ }
+}
+
+void run_ec_combine(void) {
+ int i;
+ for (i = 0; i < count * 8; i++) {
+ test_ec_combine();
+ }
}
/***** ECMULT TESTS *****/
void run_ecmult_chain(void) {
/* random starting point A (on the curve) */
- secp256k1_gej_t a = SECP256K1_GEJ_CONST(
+ secp256k1_gej a = SECP256K1_GEJ_CONST(
0x8b30bbe9, 0xae2a9906, 0x96b22f67, 0x0709dff3,
0x727fd8bc, 0x04d3362c, 0x6c7bf458, 0xe2846004,
0xa357ae91, 0x5c4a6528, 0x1309edf2, 0x0504740f,
0x0eb33439, 0x90216b4f, 0x81063cb6, 0x5f2f7e0f
);
/* two random initial factors xn and gn */
- secp256k1_scalar_t xn = SECP256K1_SCALAR_CONST(
+ secp256k1_scalar xn = SECP256K1_SCALAR_CONST(
0x84cc5452, 0xf7fde1ed, 0xb4d38a8c, 0xe9b1b84c,
0xcef31f14, 0x6e569be9, 0x705d357a, 0x42985407
);
- secp256k1_scalar_t gn = SECP256K1_SCALAR_CONST(
+ secp256k1_scalar gn = SECP256K1_SCALAR_CONST(
0xa1e58d22, 0x553dcd42, 0xb2398062, 0x5d4c57a9,
0x6e9323d4, 0x2b3152e5, 0xca2c3990, 0xedc7c9de
);
/* two small multipliers to be applied to xn and gn in every iteration: */
- static const secp256k1_scalar_t xf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x1337);
- static const secp256k1_scalar_t gf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x7113);
+ static const secp256k1_scalar xf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x1337);
+ static const secp256k1_scalar gf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x7113);
/* accumulators with the resulting coefficients to A and G */
- secp256k1_scalar_t ae = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
- secp256k1_scalar_t ge = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
+ secp256k1_scalar ae = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
+ secp256k1_scalar ge = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
/* actual points */
- secp256k1_gej_t x = a;
- secp256k1_gej_t x2;
+ secp256k1_gej x;
+ secp256k1_gej x2;
int i;
/* the point being computed */
x = a;
for (i = 0; i < 200*count; i++) {
/* in each iteration, compute X = xn*X + gn*G; */
- secp256k1_ecmult(&x, &x, &xn, &gn);
+ secp256k1_ecmult(&ctx->ecmult_ctx, &x, &x, &xn, &gn);
/* also compute ae and ge: the actual accumulated factors for A and G */
/* if X was (ae*A+ge*G), xn*X + gn*G results in (xn*ae*A + (xn*ge+gn)*G) */
secp256k1_scalar_mul(&ae, &ae, &xn);
@@ -1048,7 +1350,7 @@ void run_ecmult_chain(void) {
/* verify */
if (i == 19999) {
/* expected result after 19999 iterations */
- secp256k1_gej_t rp = SECP256K1_GEJ_CONST(
+ secp256k1_gej rp = SECP256K1_GEJ_CONST(
0xD6E96687, 0xF9B10D09, 0x2A6F3543, 0x9D86CEBE,
0xA4535D0D, 0x409F5358, 0x6440BD74, 0xB933E830,
0xB95CBCA2, 0xC77DA786, 0x539BE8FD, 0x53354D2D,
@@ -1056,30 +1358,32 @@ void run_ecmult_chain(void) {
);
secp256k1_gej_neg(&rp, &rp);
- secp256k1_gej_add_var(&rp, &rp, &x);
+ secp256k1_gej_add_var(&rp, &rp, &x, NULL);
CHECK(secp256k1_gej_is_infinity(&rp));
}
}
/* redo the computation, but directly with the resulting ae and ge coefficients: */
- secp256k1_ecmult(&x2, &a, &ae, &ge);
+ secp256k1_ecmult(&ctx->ecmult_ctx, &x2, &a, &ae, &ge);
secp256k1_gej_neg(&x2, &x2);
- secp256k1_gej_add_var(&x2, &x2, &x);
+ secp256k1_gej_add_var(&x2, &x2, &x, NULL);
CHECK(secp256k1_gej_is_infinity(&x2));
}
-void test_point_times_order(const secp256k1_gej_t *point) {
+void test_point_times_order(const secp256k1_gej *point) {
/* X * (point + G) + (order-X) * (pointer + G) = 0 */
- secp256k1_scalar_t x;
- secp256k1_scalar_t nx;
- secp256k1_gej_t res1, res2;
- secp256k1_ge_t res3;
+ secp256k1_scalar x;
+ secp256k1_scalar nx;
+ secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
+ secp256k1_scalar one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
+ secp256k1_gej res1, res2;
+ secp256k1_ge res3;
unsigned char pub[65];
- int psize = 65;
+ size_t psize = 65;
random_scalar_order_test(&x);
secp256k1_scalar_negate(&nx, &x);
- secp256k1_ecmult(&res1, point, &x, &x); /* calc res1 = x * point + x * G; */
- secp256k1_ecmult(&res2, point, &nx, &nx); /* calc res2 = (order - x) * point + (order - x) * G; */
- secp256k1_gej_add_var(&res1, &res1, &res2);
+ secp256k1_ecmult(&ctx->ecmult_ctx, &res1, point, &x, &x); /* calc res1 = x * point + x * G; */
+ secp256k1_ecmult(&ctx->ecmult_ctx, &res2, point, &nx, &nx); /* calc res2 = (order - x) * point + (order - x) * G; */
+ secp256k1_gej_add_var(&res1, &res1, &res2, NULL);
CHECK(secp256k1_gej_is_infinity(&res1));
CHECK(secp256k1_gej_is_valid_var(&res1) == 0);
secp256k1_ge_set_gej(&res3, &res1);
@@ -1088,19 +1392,29 @@ void test_point_times_order(const secp256k1_gej_t *point) {
CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 0) == 0);
psize = 65;
CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 1) == 0);
+ /* check zero/one edge cases */
+ secp256k1_ecmult(&ctx->ecmult_ctx, &res1, point, &zero, &zero);
+ secp256k1_ge_set_gej(&res3, &res1);
+ CHECK(secp256k1_ge_is_infinity(&res3));
+ secp256k1_ecmult(&ctx->ecmult_ctx, &res1, point, &one, &zero);
+ secp256k1_ge_set_gej(&res3, &res1);
+ ge_equals_gej(&res3, point);
+ secp256k1_ecmult(&ctx->ecmult_ctx, &res1, point, &zero, &one);
+ secp256k1_ge_set_gej(&res3, &res1);
+ ge_equals_ge(&res3, &secp256k1_ge_const_g);
}
void run_point_times_order(void) {
int i;
- secp256k1_fe_t x = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 2);
- static const secp256k1_fe_t xr = SECP256K1_FE_CONST(
+ secp256k1_fe x = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 2);
+ static const secp256k1_fe xr = SECP256K1_FE_CONST(
0x7603CB59, 0xB0EF6C63, 0xFE608479, 0x2A0C378C,
0xDB3233A8, 0x0F8A9A09, 0xA877DEAD, 0x31B38C45
);
for (i = 0; i < 500; i++) {
- secp256k1_ge_t p;
+ secp256k1_ge p;
if (secp256k1_ge_set_xo_var(&p, &x, 1)) {
- secp256k1_gej_t j;
+ secp256k1_gej j;
CHECK(secp256k1_ge_is_valid_var(&p));
secp256k1_gej_set_ge(&j, &p);
CHECK(secp256k1_gej_is_valid_var(&j));
@@ -1112,15 +1426,118 @@ void run_point_times_order(void) {
CHECK(secp256k1_fe_equal_var(&x, &xr));
}
-void test_wnaf(const secp256k1_scalar_t *number, int w) {
- secp256k1_scalar_t x, two, t;
+void ecmult_const_random_mult(void) {
+ /* random starting point A (on the curve) */
+ secp256k1_ge a = SECP256K1_GE_CONST(
+ 0x6d986544, 0x57ff52b8, 0xcf1b8126, 0x5b802a5b,
+ 0xa97f9263, 0xb1e88044, 0x93351325, 0x91bc450a,
+ 0x535c59f7, 0x325e5d2b, 0xc391fbe8, 0x3c12787c,
+ 0x337e4a98, 0xe82a9011, 0x0123ba37, 0xdd769c7d
+ );
+ /* random initial factor xn */
+ secp256k1_scalar xn = SECP256K1_SCALAR_CONST(
+ 0x649d4f77, 0xc4242df7, 0x7f2079c9, 0x14530327,
+ 0xa31b876a, 0xd2d8ce2a, 0x2236d5c6, 0xd7b2029b
+ );
+ /* expected xn * A (from sage) */
+ secp256k1_ge expected_b = SECP256K1_GE_CONST(
+ 0x23773684, 0x4d209dc7, 0x098a786f, 0x20d06fcd,
+ 0x070a38bf, 0xc11ac651, 0x03004319, 0x1e2a8786,
+ 0xed8c3b8e, 0xc06dd57b, 0xd06ea66e, 0x45492b0f,
+ 0xb84e4e1b, 0xfb77e21f, 0x96baae2a, 0x63dec956
+ );
+ secp256k1_gej b;
+ secp256k1_ecmult_const(&b, &a, &xn);
+
+ CHECK(secp256k1_ge_is_valid_var(&a));
+ ge_equals_gej(&expected_b, &b);
+}
+
+void ecmult_const_commutativity(void) {
+ secp256k1_scalar a;
+ secp256k1_scalar b;
+ secp256k1_gej res1;
+ secp256k1_gej res2;
+ secp256k1_ge mid1;
+ secp256k1_ge mid2;
+ random_scalar_order_test(&a);
+ random_scalar_order_test(&b);
+
+ secp256k1_ecmult_const(&res1, &secp256k1_ge_const_g, &a);
+ secp256k1_ecmult_const(&res2, &secp256k1_ge_const_g, &b);
+ secp256k1_ge_set_gej(&mid1, &res1);
+ secp256k1_ge_set_gej(&mid2, &res2);
+ secp256k1_ecmult_const(&res1, &mid1, &b);
+ secp256k1_ecmult_const(&res2, &mid2, &a);
+ secp256k1_ge_set_gej(&mid1, &res1);
+ secp256k1_ge_set_gej(&mid2, &res2);
+ ge_equals_ge(&mid1, &mid2);
+}
+
+void ecmult_const_mult_zero_one(void) {
+ secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
+ secp256k1_scalar one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
+ secp256k1_scalar negone;
+ secp256k1_gej res1;
+ secp256k1_ge res2;
+ secp256k1_ge point;
+ secp256k1_scalar_negate(&negone, &one);
+
+ random_group_element_test(&point);
+ secp256k1_ecmult_const(&res1, &point, &zero);
+ secp256k1_ge_set_gej(&res2, &res1);
+ CHECK(secp256k1_ge_is_infinity(&res2));
+ secp256k1_ecmult_const(&res1, &point, &one);
+ secp256k1_ge_set_gej(&res2, &res1);
+ ge_equals_ge(&res2, &point);
+ secp256k1_ecmult_const(&res1, &point, &negone);
+ secp256k1_gej_neg(&res1, &res1);
+ secp256k1_ge_set_gej(&res2, &res1);
+ ge_equals_ge(&res2, &point);
+}
+
+void ecmult_const_chain_multiply(void) {
+ /* Check known result (randomly generated test problem from sage) */
+ const secp256k1_scalar scalar = SECP256K1_SCALAR_CONST(
+ 0x4968d524, 0x2abf9b7a, 0x466abbcf, 0x34b11b6d,
+ 0xcd83d307, 0x827bed62, 0x05fad0ce, 0x18fae63b
+ );
+ const secp256k1_gej expected_point = SECP256K1_GEJ_CONST(
+ 0x5494c15d, 0x32099706, 0xc2395f94, 0x348745fd,
+ 0x757ce30e, 0x4e8c90fb, 0xa2bad184, 0xf883c69f,
+ 0x5d195d20, 0xe191bf7f, 0x1be3e55f, 0x56a80196,
+ 0x6071ad01, 0xf1462f66, 0xc997fa94, 0xdb858435
+ );
+ secp256k1_gej point;
+ secp256k1_ge res;
+ int i;
+
+ secp256k1_gej_set_ge(&point, &secp256k1_ge_const_g);
+ for (i = 0; i < 100; ++i) {
+ secp256k1_ge tmp;
+ secp256k1_ge_set_gej(&tmp, &point);
+ secp256k1_ecmult_const(&point, &tmp, &scalar);
+ }
+ secp256k1_ge_set_gej(&res, &point);
+ ge_equals_gej(&res, &expected_point);
+}
+
+void run_ecmult_const_tests(void) {
+ ecmult_const_mult_zero_one();
+ ecmult_const_random_mult();
+ ecmult_const_commutativity();
+ ecmult_const_chain_multiply();
+}
+
+void test_wnaf(const secp256k1_scalar *number, int w) {
+ secp256k1_scalar x, two, t;
int wnaf[256];
int zeroes = -1;
int i;
int bits;
secp256k1_scalar_set_int(&x, 0);
secp256k1_scalar_set_int(&two, 2);
- bits = secp256k1_ecmult_wnaf(wnaf, number, w);
+ bits = secp256k1_ecmult_wnaf(wnaf, 256, number, w);
CHECK(bits <= 256);
for (i = bits-1; i >= 0; i--) {
int v = wnaf[i];
@@ -1146,43 +1563,223 @@ void test_wnaf(const secp256k1_scalar_t *number, int w) {
CHECK(secp256k1_scalar_eq(&x, number)); /* check that wnaf represents number */
}
+void test_constant_wnaf_negate(const secp256k1_scalar *number) {
+ secp256k1_scalar neg1 = *number;
+ secp256k1_scalar neg2 = *number;
+ int sign1 = 1;
+ int sign2 = 1;
+
+ if (!secp256k1_scalar_get_bits(&neg1, 0, 1)) {
+ secp256k1_scalar_negate(&neg1, &neg1);
+ sign1 = -1;
+ }
+ sign2 = secp256k1_scalar_cond_negate(&neg2, secp256k1_scalar_is_even(&neg2));
+ CHECK(sign1 == sign2);
+ CHECK(secp256k1_scalar_eq(&neg1, &neg2));
+}
+
+void test_constant_wnaf(const secp256k1_scalar *number, int w) {
+ secp256k1_scalar x, shift;
+ int wnaf[256] = {0};
+ int i;
+#ifdef USE_ENDOMORPHISM
+ int skew;
+#endif
+ secp256k1_scalar num = *number;
+
+ secp256k1_scalar_set_int(&x, 0);
+ secp256k1_scalar_set_int(&shift, 1 << w);
+ /* With USE_ENDOMORPHISM on we only consider 128-bit numbers */
+#ifdef USE_ENDOMORPHISM
+ for (i = 0; i < 16; ++i) {
+ secp256k1_scalar_shr_int(&num, 8);
+ }
+ skew = secp256k1_wnaf_const(wnaf, num, w);
+#else
+ secp256k1_wnaf_const(wnaf, num, w);
+#endif
+
+ for (i = WNAF_SIZE(w); i >= 0; --i) {
+ secp256k1_scalar t;
+ int v = wnaf[i];
+ CHECK(v != 0); /* check nonzero */
+ CHECK(v & 1); /* check parity */
+ CHECK(v > -(1 << w)); /* check range above */
+ CHECK(v < (1 << w)); /* check range below */
+
+ secp256k1_scalar_mul(&x, &x, &shift);
+ if (v >= 0) {
+ secp256k1_scalar_set_int(&t, v);
+ } else {
+ secp256k1_scalar_set_int(&t, -v);
+ secp256k1_scalar_negate(&t, &t);
+ }
+ secp256k1_scalar_add(&x, &x, &t);
+ }
+#ifdef USE_ENDOMORPHISM
+ /* Skew num because when encoding 128-bit numbers as odd we use an offset */
+ secp256k1_scalar_cadd_bit(&num, skew == 2, 1);
+#endif
+ CHECK(secp256k1_scalar_eq(&x, &num));
+}
+
void run_wnaf(void) {
int i;
- secp256k1_scalar_t n;
+ secp256k1_scalar n = {{0}};
+
+ /* Sanity check: 1 and 2 are the smallest odd and even numbers and should
+ * have easier-to-diagnose failure modes */
+ n.d[0] = 1;
+ test_constant_wnaf(&n, 4);
+ n.d[0] = 2;
+ test_constant_wnaf(&n, 4);
+ /* Random tests */
for (i = 0; i < count; i++) {
random_scalar_order(&n);
test_wnaf(&n, 4+(i%10));
+ test_constant_wnaf_negate(&n);
+ test_constant_wnaf(&n, 4 + (i % 10));
+ }
+}
+
+void test_ecmult_constants(void) {
+ /* Test ecmult_gen() for [0..36) and [order-36..0). */
+ secp256k1_scalar x;
+ secp256k1_gej r;
+ secp256k1_ge ng;
+ int i;
+ int j;
+ secp256k1_ge_neg(&ng, &secp256k1_ge_const_g);
+ for (i = 0; i < 36; i++ ) {
+ secp256k1_scalar_set_int(&x, i);
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &r, &x);
+ for (j = 0; j < i; j++) {
+ if (j == i - 1) {
+ ge_equals_gej(&secp256k1_ge_const_g, &r);
+ }
+ secp256k1_gej_add_ge(&r, &r, &ng);
+ }
+ CHECK(secp256k1_gej_is_infinity(&r));
+ }
+ for (i = 1; i <= 36; i++ ) {
+ secp256k1_scalar_set_int(&x, i);
+ secp256k1_scalar_negate(&x, &x);
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &r, &x);
+ for (j = 0; j < i; j++) {
+ if (j == i - 1) {
+ ge_equals_gej(&ng, &r);
+ }
+ secp256k1_gej_add_ge(&r, &r, &secp256k1_ge_const_g);
+ }
+ CHECK(secp256k1_gej_is_infinity(&r));
+ }
+}
+
+void run_ecmult_constants(void) {
+ test_ecmult_constants();
+}
+
+void test_ecmult_gen_blind(void) {
+ /* Test ecmult_gen() blinding and confirm that the blinding changes, the affline points match, and the z's don't match. */
+ secp256k1_scalar key;
+ secp256k1_scalar b;
+ unsigned char seed32[32];
+ secp256k1_gej pgej;
+ secp256k1_gej pgej2;
+ secp256k1_gej i;
+ secp256k1_ge pge;
+ random_scalar_order_test(&key);
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pgej, &key);
+ secp256k1_rand256(seed32);
+ b = ctx->ecmult_gen_ctx.blind;
+ i = ctx->ecmult_gen_ctx.initial;
+ secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32);
+ CHECK(!secp256k1_scalar_eq(&b, &ctx->ecmult_gen_ctx.blind));
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pgej2, &key);
+ CHECK(!gej_xyz_equals_gej(&pgej, &pgej2));
+ CHECK(!gej_xyz_equals_gej(&i, &ctx->ecmult_gen_ctx.initial));
+ secp256k1_ge_set_gej(&pge, &pgej);
+ ge_equals_gej(&pge, &pgej2);
+}
+
+void test_ecmult_gen_blind_reset(void) {
+ /* Test ecmult_gen() blinding reset and confirm that the blinding is consistent. */
+ secp256k1_scalar b;
+ secp256k1_gej initial;
+ secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, 0);
+ b = ctx->ecmult_gen_ctx.blind;
+ initial = ctx->ecmult_gen_ctx.initial;
+ secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, 0);
+ CHECK(secp256k1_scalar_eq(&b, &ctx->ecmult_gen_ctx.blind));
+ CHECK(gej_xyz_equals_gej(&initial, &ctx->ecmult_gen_ctx.initial));
+}
+
+void run_ecmult_gen_blind(void) {
+ int i;
+ test_ecmult_gen_blind_reset();
+ for (i = 0; i < 10; i++) {
+ test_ecmult_gen_blind();
+ }
+}
+
+#ifdef USE_ENDOMORPHISM
+/***** ENDOMORPHISH TESTS *****/
+void test_scalar_split(void) {
+ secp256k1_scalar full;
+ secp256k1_scalar s1, slam;
+ const unsigned char zero[32] = {0};
+ unsigned char tmp[32];
+
+ random_scalar_order_test(&full);
+ secp256k1_scalar_split_lambda(&s1, &slam, &full);
+
+ /* check that both are <= 128 bits in size */
+ if (secp256k1_scalar_is_high(&s1)) {
+ secp256k1_scalar_negate(&s1, &s1);
+ }
+ if (secp256k1_scalar_is_high(&slam)) {
+ secp256k1_scalar_negate(&slam, &slam);
}
+
+ secp256k1_scalar_get_b32(tmp, &s1);
+ CHECK(memcmp(zero, tmp, 16) == 0);
+ secp256k1_scalar_get_b32(tmp, &slam);
+ CHECK(memcmp(zero, tmp, 16) == 0);
+}
+
+void run_endomorphism_tests(void) {
+ test_scalar_split();
}
+#endif
-void random_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_scalar_t *key, const secp256k1_scalar_t *msg, int *recid) {
- secp256k1_scalar_t nonce;
+void random_sign(secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *key, const secp256k1_scalar *msg, int *recid) {
+ secp256k1_scalar nonce;
do {
random_scalar_order_test(&nonce);
- } while(!secp256k1_ecdsa_sig_sign(sig, key, msg, &nonce, recid));
+ } while(!secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, sigr, sigs, key, msg, &nonce, recid));
}
void test_ecdsa_sign_verify(void) {
- secp256k1_gej_t pubj;
- secp256k1_ge_t pub;
- secp256k1_scalar_t one;
- secp256k1_scalar_t msg, key;
- secp256k1_ecdsa_sig_t sig;
+ secp256k1_gej pubj;
+ secp256k1_ge pub;
+ secp256k1_scalar one;
+ secp256k1_scalar msg, key;
+ secp256k1_scalar sigr, sigs;
int recid;
int getrec;
random_scalar_order_test(&msg);
random_scalar_order_test(&key);
- secp256k1_ecmult_gen(&pubj, &key);
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pubj, &key);
secp256k1_ge_set_gej(&pub, &pubj);
getrec = secp256k1_rand32()&1;
- random_sign(&sig, &key, &msg, getrec?&recid:NULL);
+ random_sign(&sigr, &sigs, &key, &msg, getrec?&recid:NULL);
if (getrec) {
CHECK(recid >= 0 && recid < 4);
}
- CHECK(secp256k1_ecdsa_sig_verify(&sig, &pub, &msg));
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sigr, &sigs, &pub, &msg));
secp256k1_scalar_set_int(&one, 1);
secp256k1_scalar_add(&msg, &msg, &one);
- CHECK(!secp256k1_ecdsa_sig_verify(&sig, &pub, &msg));
+ CHECK(!secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sigr, &sigs, &pub, &msg));
}
void run_ecdsa_sign_verify(void) {
@@ -1193,22 +1790,23 @@ void run_ecdsa_sign_verify(void) {
}
/** Dummy nonce generation function that just uses a precomputed nonce, and fails if it is not accepted. Use only for testing. */
-static int precomputed_nonce_function(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, unsigned int counter, const void *data) {
+static int precomputed_nonce_function(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) {
(void)msg32;
(void)key32;
+ (void)algo16;
memcpy(nonce32, data, 32);
return (counter == 0);
}
-static int nonce_function_test_fail(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, unsigned int counter, const void *data) {
+static int nonce_function_test_fail(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) {
/* Dummy nonce generator that has a fatal error on the first counter value. */
if (counter == 0) {
return 0;
}
- return nonce_function_rfc6979(nonce32, msg32, key32, counter - 1, data);
+ return nonce_function_rfc6979(nonce32, msg32, key32, algo16, data, counter - 1);
}
-static int nonce_function_test_retry(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, unsigned int counter, const void *data) {
+static int nonce_function_test_retry(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) {
/* Dummy nonce generator that produces unacceptable nonces for the first several counter values. */
if (counter < 3) {
memset(nonce32, counter==0 ? 0 : 255, 32);
@@ -1235,12 +1833,12 @@ static int nonce_function_test_retry(unsigned char *nonce32, const unsigned char
if (counter > 5) {
return 0;
}
- return nonce_function_rfc6979(nonce32, msg32, key32, counter - 5, data);
+ return nonce_function_rfc6979(nonce32, msg32, key32, algo16, data, counter - 5);
}
-int is_empty_compact_signature(const unsigned char *sig64) {
- static const unsigned char res[64] = {0};
- return memcmp(sig64, res, 64) == 0;
+int is_empty_signature(const secp256k1_ecdsa_signature *sig) {
+ static const unsigned char res[sizeof(secp256k1_ecdsa_signature)] = {0};
+ return memcmp(sig, res, sizeof(secp256k1_ecdsa_signature)) == 0;
}
void test_ecdsa_end_to_end(void) {
@@ -1248,26 +1846,18 @@ void test_ecdsa_end_to_end(void) {
unsigned char privkey[32];
unsigned char message[32];
unsigned char privkey2[32];
- unsigned char csignature[64];
- unsigned char signature[72];
- unsigned char signature2[72];
- unsigned char signature3[72];
- unsigned char signature4[72];
- unsigned char pubkey[65];
- unsigned char recpubkey[65];
+ secp256k1_ecdsa_signature signature[5];
+ unsigned char sig[74];
+ size_t siglen = 74;
+ unsigned char pubkeyc[65];
+ size_t pubkeyclen = 65;
+ secp256k1_pubkey pubkey;
unsigned char seckey[300];
- int signaturelen = 72;
- int signaturelen2 = 72;
- int signaturelen3 = 72;
- int signaturelen4 = 72;
- int recid = 0;
- int recpubkeylen = 0;
- int pubkeylen = 65;
- int seckeylen = 300;
+ size_t seckeylen = 300;
/* Generate a random key and message. */
{
- secp256k1_scalar_t msg, key;
+ secp256k1_scalar msg, key;
random_scalar_order_test(&msg);
random_scalar_order_test(&key);
secp256k1_scalar_get_b32(privkey, &key);
@@ -1275,16 +1865,17 @@ void test_ecdsa_end_to_end(void) {
}
/* Construct and verify corresponding public key. */
- CHECK(secp256k1_ec_seckey_verify(privkey) == 1);
- CHECK(secp256k1_ec_pubkey_create(pubkey, &pubkeylen, privkey, (secp256k1_rand32() & 3) != 0) == 1);
- if (secp256k1_rand32() & 1) {
- CHECK(secp256k1_ec_pubkey_decompress(pubkey, &pubkeylen));
- }
- CHECK(secp256k1_ec_pubkey_verify(pubkey, pubkeylen));
+ CHECK(secp256k1_ec_seckey_verify(ctx, privkey) == 1);
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, privkey) == 1);
+
+ /* Verify exporting and importing public key. */
+ CHECK(secp256k1_ec_pubkey_serialize(ctx, pubkeyc, &pubkeyclen, &pubkey, secp256k1_rand32() % 2) == 1);
+ memset(&pubkey, 0, sizeof(pubkey));
+ CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, pubkeyclen) == 1);
/* Verify private key import and export. */
- CHECK(secp256k1_ec_privkey_export(privkey, seckey, &seckeylen, secp256k1_rand32() % 2) == 1);
- CHECK(secp256k1_ec_privkey_import(privkey2, seckey, seckeylen) == 1);
+ CHECK(secp256k1_ec_privkey_export(ctx, seckey, &seckeylen, privkey, (secp256k1_rand32() % 2) == 1) ? SECP256K1_EC_COMPRESSED : 0);
+ CHECK(secp256k1_ec_privkey_import(ctx, privkey2, seckey, seckeylen) == 1);
CHECK(memcmp(privkey, privkey2, 32) == 0);
/* Optionally tweak the keys using addition. */
@@ -1292,17 +1883,16 @@ void test_ecdsa_end_to_end(void) {
int ret1;
int ret2;
unsigned char rnd[32];
- unsigned char pubkey2[65];
- int pubkeylen2 = 65;
+ secp256k1_pubkey pubkey2;
secp256k1_rand256_test(rnd);
- ret1 = secp256k1_ec_privkey_tweak_add(privkey, rnd);
- ret2 = secp256k1_ec_pubkey_tweak_add(pubkey, pubkeylen, rnd);
+ ret1 = secp256k1_ec_privkey_tweak_add(ctx, privkey, rnd);
+ ret2 = secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, rnd);
CHECK(ret1 == ret2);
if (ret1 == 0) {
return;
}
- CHECK(secp256k1_ec_pubkey_create(pubkey2, &pubkeylen2, privkey, pubkeylen == 33) == 1);
- CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0);
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, privkey) == 1);
+ CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
}
/* Optionally tweak the keys using multiplication. */
@@ -1310,75 +1900,67 @@ void test_ecdsa_end_to_end(void) {
int ret1;
int ret2;
unsigned char rnd[32];
- unsigned char pubkey2[65];
- int pubkeylen2 = 65;
+ secp256k1_pubkey pubkey2;
secp256k1_rand256_test(rnd);
- ret1 = secp256k1_ec_privkey_tweak_mul(privkey, rnd);
- ret2 = secp256k1_ec_pubkey_tweak_mul(pubkey, pubkeylen, rnd);
+ ret1 = secp256k1_ec_privkey_tweak_mul(ctx, privkey, rnd);
+ ret2 = secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, rnd);
CHECK(ret1 == ret2);
if (ret1 == 0) {
return;
}
- CHECK(secp256k1_ec_pubkey_create(pubkey2, &pubkeylen2, privkey, pubkeylen == 33) == 1);
- CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0);
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, privkey) == 1);
+ CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
}
/* Sign. */
- CHECK(secp256k1_ecdsa_sign(message, signature, &signaturelen, privkey, NULL, NULL) == 1);
- CHECK(signaturelen > 0);
- CHECK(secp256k1_ecdsa_sign(message, signature2, &signaturelen2, privkey, NULL, extra) == 1);
- CHECK(signaturelen2 > 0);
+ CHECK(secp256k1_ecdsa_sign(ctx, &signature[0], message, privkey, NULL, NULL) == 1);
+ CHECK(secp256k1_ecdsa_sign(ctx, &signature[4], message, privkey, NULL, NULL) == 1);
+ CHECK(secp256k1_ecdsa_sign(ctx, &signature[1], message, privkey, NULL, extra) == 1);
extra[31] = 1;
- CHECK(secp256k1_ecdsa_sign(message, signature3, &signaturelen3, privkey, NULL, extra) == 1);
- CHECK(signaturelen3 > 0);
+ CHECK(secp256k1_ecdsa_sign(ctx, &signature[2], message, privkey, NULL, extra) == 1);
extra[31] = 0;
extra[0] = 1;
- CHECK(secp256k1_ecdsa_sign(message, signature4, &signaturelen4, privkey, NULL, extra) == 1);
- CHECK(signaturelen3 > 0);
- CHECK((signaturelen != signaturelen2) || (memcmp(signature, signature2, signaturelen) != 0));
- CHECK((signaturelen != signaturelen3) || (memcmp(signature, signature3, signaturelen) != 0));
- CHECK((signaturelen3 != signaturelen2) || (memcmp(signature3, signature2, signaturelen3) != 0));
- CHECK((signaturelen4 != signaturelen3) || (memcmp(signature4, signature3, signaturelen4) != 0));
- CHECK((signaturelen4 != signaturelen2) || (memcmp(signature4, signature2, signaturelen4) != 0));
- CHECK((signaturelen4 != signaturelen) || (memcmp(signature4, signature, signaturelen4) != 0));
+ CHECK(secp256k1_ecdsa_sign(ctx, &signature[3], message, privkey, NULL, extra) == 1);
+ CHECK(memcmp(&signature[0], &signature[4], sizeof(signature[0])) == 0);
+ CHECK(memcmp(&signature[0], &signature[1], sizeof(signature[0])) != 0);
+ CHECK(memcmp(&signature[0], &signature[2], sizeof(signature[0])) != 0);
+ CHECK(memcmp(&signature[0], &signature[3], sizeof(signature[0])) != 0);
+ CHECK(memcmp(&signature[1], &signature[2], sizeof(signature[0])) != 0);
+ CHECK(memcmp(&signature[1], &signature[3], sizeof(signature[0])) != 0);
+ CHECK(memcmp(&signature[2], &signature[3], sizeof(signature[0])) != 0);
/* Verify. */
- CHECK(secp256k1_ecdsa_verify(message, signature, signaturelen, pubkey, pubkeylen) == 1);
- CHECK(secp256k1_ecdsa_verify(message, signature2, signaturelen2, pubkey, pubkeylen) == 1);
- CHECK(secp256k1_ecdsa_verify(message, signature3, signaturelen3, pubkey, pubkeylen) == 1);
- CHECK(secp256k1_ecdsa_verify(message, signature4, signaturelen4, pubkey, pubkeylen) == 1);
- /* Destroy signature and verify again. */
- signature[signaturelen - 1 - secp256k1_rand32() % 20] += 1 + (secp256k1_rand32() % 255);
- CHECK(secp256k1_ecdsa_verify(message, signature, signaturelen, pubkey, pubkeylen) != 1);
-
- /* Compact sign. */
- CHECK(secp256k1_ecdsa_sign_compact(message, csignature, privkey, NULL, NULL, &recid) == 1);
- CHECK(!is_empty_compact_signature(csignature));
- /* Recover. */
- CHECK(secp256k1_ecdsa_recover_compact(message, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) == 1);
- CHECK(recpubkeylen == pubkeylen);
- CHECK(memcmp(pubkey, recpubkey, pubkeylen) == 0);
- /* Destroy signature and verify again. */
- csignature[secp256k1_rand32() % 64] += 1 + (secp256k1_rand32() % 255);
- CHECK(secp256k1_ecdsa_recover_compact(message, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) != 1 ||
- memcmp(pubkey, recpubkey, pubkeylen) != 0);
- CHECK(recpubkeylen == pubkeylen);
-
+ CHECK(secp256k1_ecdsa_verify(ctx, &signature[0], message, &pubkey) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &signature[1], message, &pubkey) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &signature[2], message, &pubkey) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &signature[3], message, &pubkey) == 1);
+
+ /* Serialize/parse DER and verify again */
+ CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature[0]) == 1);
+ memset(&signature[0], 0, sizeof(signature[0]));
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &signature[0], sig, siglen) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &signature[0], message, &pubkey) == 1);
+ /* Serialize/destroy/parse DER and verify again. */
+ siglen = 74;
+ CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature[0]) == 1);
+ sig[secp256k1_rand32() % siglen] += 1 + (secp256k1_rand32() % 255);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &signature[0], sig, siglen) == 0 ||
+ secp256k1_ecdsa_verify(ctx, &signature[0], message, &pubkey) == 0);
}
void test_random_pubkeys(void) {
- secp256k1_ge_t elem;
- secp256k1_ge_t elem2;
+ secp256k1_ge elem;
+ secp256k1_ge elem2;
unsigned char in[65];
/* Generate some randomly sized pubkeys. */
uint32_t r = secp256k1_rand32();
- int len = (r & 3) == 0 ? 65 : 33;
+ size_t len = (r & 3) == 0 ? 65 : 33;
r>>=2;
if ((r & 3) == 0) {
len = (r & 252) >> 3;
}
r>>=8;
if (len == 65) {
- in[0] = (r & 2) ? 4 : (r & 1? 6 : 7);
+ in[0] = (r & 2) ? 4 : ((r & 1)? 6 : 7);
} else {
in[0] = (r & 1) ? 2 : 3;
}
@@ -1397,10 +1979,10 @@ void test_random_pubkeys(void) {
unsigned char out[65];
unsigned char firstb;
int res;
- int size = len;
+ size_t size = len;
firstb = in[0];
/* If the pubkey can be parsed, it should round-trip... */
- CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, len == 33));
+ CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, (len == 33) ? SECP256K1_EC_COMPRESSED : 0));
CHECK(size == len);
CHECK(memcmp(&in[1], &out[1], len-1) == 0);
/* ... except for the type of hybrid inputs. */
@@ -1446,182 +2028,29 @@ void run_ecdsa_end_to_end(void) {
/* Tests several edge cases. */
void test_ecdsa_edge_cases(void) {
- const unsigned char msg32[32] = {
- 'T', 'h', 'i', 's', ' ', 'i', 's', ' ',
- 'a', ' ', 'v', 'e', 'r', 'y', ' ', 's',
- 'e', 'c', 'r', 'e', 't', ' ', 'm', 'e',
- 's', 's', 'a', 'g', 'e', '.', '.', '.'
- };
- const unsigned char sig64[64] = {
- /* Generated by signing the above message with nonce 'This is the nonce we will use...'
- * and secret key 0 (which is not valid), resulting in recid 0. */
- 0x67, 0xCB, 0x28, 0x5F, 0x9C, 0xD1, 0x94, 0xE8,
- 0x40, 0xD6, 0x29, 0x39, 0x7A, 0xF5, 0x56, 0x96,
- 0x62, 0xFD, 0xE4, 0x46, 0x49, 0x99, 0x59, 0x63,
- 0x17, 0x9A, 0x7D, 0xD1, 0x7B, 0xD2, 0x35, 0x32,
- 0x4B, 0x1B, 0x7D, 0xF3, 0x4C, 0xE1, 0xF6, 0x8E,
- 0x69, 0x4F, 0xF6, 0xF1, 0x1A, 0xC7, 0x51, 0xDD,
- 0x7D, 0xD7, 0x3E, 0x38, 0x7E, 0xE4, 0xFC, 0x86,
- 0x6E, 0x1B, 0xE8, 0xEC, 0xC7, 0xDD, 0x95, 0x57
- };
- unsigned char pubkey[65];
int t;
- int pubkeylen = 65;
- /* signature (r,s) = (4,4), which can be recovered with all 4 recids. */
- const unsigned char sigb64[64] = {
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
- };
- unsigned char pubkeyb[33];
- int pubkeyblen = 33;
- int recid;
-
- CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 0));
- CHECK(secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 1));
- CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 2));
- CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 3));
-
- for (recid = 0; recid < 4; recid++) {
- int i;
- int recid2;
- /* (4,4) encoded in DER. */
- unsigned char sigbder[8] = {0x30, 0x06, 0x02, 0x01, 0x04, 0x02, 0x01, 0x04};
- unsigned char sigcder_zr[7] = {0x30, 0x05, 0x02, 0x00, 0x02, 0x01, 0x01};
- unsigned char sigcder_zs[7] = {0x30, 0x05, 0x02, 0x01, 0x01, 0x02, 0x00};
- unsigned char sigbderalt1[39] = {
- 0x30, 0x25, 0x02, 0x20, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x04, 0x02, 0x01, 0x04,
- };
- unsigned char sigbderalt2[39] = {
- 0x30, 0x25, 0x02, 0x01, 0x04, 0x02, 0x20, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
- };
- unsigned char sigbderalt3[40] = {
- 0x30, 0x26, 0x02, 0x21, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x04, 0x02, 0x01, 0x04,
- };
- unsigned char sigbderalt4[40] = {
- 0x30, 0x26, 0x02, 0x01, 0x04, 0x02, 0x21, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
- };
- /* (order + r,4) encoded in DER. */
- unsigned char sigbderlong[40] = {
- 0x30, 0x26, 0x02, 0x21, 0x00, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC,
- 0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E,
- 0x8C, 0xD0, 0x36, 0x41, 0x45, 0x02, 0x01, 0x04
- };
- CHECK(secp256k1_ecdsa_recover_compact(msg32, sigb64, pubkeyb, &pubkeyblen, 1, recid));
- CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 1);
- for (recid2 = 0; recid2 < 4; recid2++) {
- unsigned char pubkey2b[33];
- int pubkey2blen = 33;
- CHECK(secp256k1_ecdsa_recover_compact(msg32, sigb64, pubkey2b, &pubkey2blen, 1, recid2));
- /* Verifying with (order + r,4) should always fail. */
- CHECK(secp256k1_ecdsa_verify(msg32, sigbderlong, sizeof(sigbderlong), pubkey2b, pubkey2blen) != 1);
- }
- /* DER parsing tests. */
- /* Zero length r/s. */
- CHECK(secp256k1_ecdsa_verify(msg32, sigcder_zr, sizeof(sigcder_zr), pubkeyb, pubkeyblen) == -2);
- CHECK(secp256k1_ecdsa_verify(msg32, sigcder_zs, sizeof(sigcder_zs), pubkeyb, pubkeyblen) == -2);
- /* Leading zeros. */
- CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt1, sizeof(sigbderalt1), pubkeyb, pubkeyblen) == 1);
- CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt2, sizeof(sigbderalt2), pubkeyb, pubkeyblen) == 1);
- CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt3, sizeof(sigbderalt3), pubkeyb, pubkeyblen) == 1);
- CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt4, sizeof(sigbderalt4), pubkeyb, pubkeyblen) == 1);
- sigbderalt3[4] = 1;
- CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt3, sizeof(sigbderalt3), pubkeyb, pubkeyblen) == -2);
- sigbderalt4[7] = 1;
- CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt4, sizeof(sigbderalt4), pubkeyb, pubkeyblen) == -2);
- /* Damage signature. */
- sigbder[7]++;
- CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 0);
- sigbder[7]--;
- CHECK(secp256k1_ecdsa_verify(msg32, sigbder, 6, pubkeyb, pubkeyblen) == -2);
- CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder)-1, pubkeyb, pubkeyblen) == -2);
- for(i = 0; i < 8; i++) {
- int c;
- unsigned char orig = sigbder[i];
- /*Try every single-byte change.*/
- for (c = 0; c < 256; c++) {
- if (c == orig ) {
- continue;
- }
- sigbder[i] = c;
- CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) ==
- (i==4 || i==7) ? 0 : -2 );
- }
- sigbder[i] = orig;
- }
- }
+ secp256k1_ecdsa_signature sig;
/* Test the case where ECDSA recomputes a point that is infinity. */
{
- secp256k1_gej_t keyj;
- secp256k1_ge_t key;
- secp256k1_scalar_t msg;
- secp256k1_ecdsa_sig_t sig;
- secp256k1_scalar_set_int(&sig.s, 1);
- secp256k1_scalar_negate(&sig.s, &sig.s);
- secp256k1_scalar_inverse(&sig.s, &sig.s);
- secp256k1_scalar_set_int(&sig.r, 1);
- secp256k1_ecmult_gen(&keyj, &sig.r);
+ secp256k1_gej keyj;
+ secp256k1_ge key;
+ secp256k1_scalar msg;
+ secp256k1_scalar sr, ss;
+ secp256k1_scalar_set_int(&ss, 1);
+ secp256k1_scalar_negate(&ss, &ss);
+ secp256k1_scalar_inverse(&ss, &ss);
+ secp256k1_scalar_set_int(&sr, 1);
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &keyj, &sr);
secp256k1_ge_set_gej(&key, &keyj);
- msg = sig.s;
- CHECK(secp256k1_ecdsa_sig_verify(&sig, &key, &msg) == 0);
- }
-
- /* Test r/s equal to zero */
- {
- /* (1,1) encoded in DER. */
- unsigned char sigcder[8] = {0x30, 0x06, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01};
- unsigned char sigc64[64] = {
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
- };
- unsigned char pubkeyc[65];
- int pubkeyclen = 65;
- CHECK(secp256k1_ecdsa_recover_compact(msg32, sigc64, pubkeyc, &pubkeyclen, 0, 0) == 1);
- CHECK(secp256k1_ecdsa_verify(msg32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 1);
- sigcder[4] = 0;
- sigc64[31] = 0;
- CHECK(secp256k1_ecdsa_recover_compact(msg32, sigc64, pubkeyb, &pubkeyblen, 1, 0) == 0);
- CHECK(secp256k1_ecdsa_verify(msg32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 0);
- sigcder[4] = 1;
- sigcder[7] = 0;
- sigc64[31] = 1;
- sigc64[63] = 0;
- CHECK(secp256k1_ecdsa_recover_compact(msg32, sigc64, pubkeyb, &pubkeyblen, 1, 0) == 0);
- CHECK(secp256k1_ecdsa_verify(msg32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 0);
+ msg = ss;
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0);
}
/*Signature where s would be zero.*/
{
+ unsigned char signature[72];
+ size_t siglen;
const unsigned char nonce[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
@@ -1646,21 +2075,15 @@ void test_ecdsa_edge_cases(void) {
0xb8, 0x12, 0xe0, 0x0b, 0x81, 0x7a, 0x77, 0x62,
0x65, 0xdf, 0xdd, 0x31, 0xb9, 0x3e, 0x29, 0xa9,
};
- unsigned char sig[72];
- int siglen = 72;
- CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce) == 0);
- CHECK(siglen == 0);
- CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce2) == 0);
- CHECK(siglen == 0);
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce) == 0);
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce2) == 0);
msg[31] = 0xaa;
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce) == 1);
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce2) == 1);
siglen = 72;
- CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce) == 1);
- CHECK(siglen > 0);
- CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce2) == 1);
- CHECK(siglen > 0);
+ CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, signature, &siglen, &sig) == 1);
siglen = 10;
- CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce) != 1);
- CHECK(siglen == 0);
+ CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, signature, &siglen, &sig) == 0);
}
/* Nonce function corner cases. */
@@ -1669,65 +2092,43 @@ void test_ecdsa_edge_cases(void) {
int i;
unsigned char key[32];
unsigned char msg[32];
- unsigned char sig[72];
- unsigned char sig2[72];
- secp256k1_ecdsa_sig_t s[512];
- int siglen = 72;
- int siglen2 = 72;
- int recid2;
+ secp256k1_ecdsa_signature sig2;
+ secp256k1_scalar sr[512], ss;
const unsigned char *extra;
extra = t == 0 ? NULL : zero;
memset(msg, 0, 32);
msg[31] = 1;
/* High key results in signature failure. */
memset(key, 0xFF, 32);
- CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, NULL, extra) == 0);
- CHECK(siglen == 0);
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, NULL, extra) == 0);
+ CHECK(is_empty_signature(&sig));
/* Zero key results in signature failure. */
memset(key, 0, 32);
- CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, NULL, extra) == 0);
- CHECK(siglen == 0);
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, NULL, extra) == 0);
+ CHECK(is_empty_signature(&sig));
/* Nonce function failure results in signature failure. */
key[31] = 1;
- CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, nonce_function_test_fail, extra) == 0);
- CHECK(siglen == 0);
- CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, nonce_function_test_fail, extra, &recid) == 0);
- CHECK(is_empty_compact_signature(sig));
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, nonce_function_test_fail, extra) == 0);
+ CHECK(is_empty_signature(&sig));
/* The retry loop successfully makes its way to the first good value. */
- siglen = 72;
- CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, nonce_function_test_retry, extra) == 1);
- CHECK(siglen > 0);
- CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, nonce_function_rfc6979, extra) == 1);
- CHECK(siglen > 0);
- CHECK((siglen == siglen2) && (memcmp(sig, sig2, siglen) == 0));
- CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, nonce_function_test_retry, extra, &recid) == 1);
- CHECK(!is_empty_compact_signature(sig));
- CHECK(secp256k1_ecdsa_sign_compact(msg, sig2, key, nonce_function_rfc6979, extra, &recid2) == 1);
- CHECK(!is_empty_compact_signature(sig2));
- CHECK((recid == recid2) && (memcmp(sig, sig2, 64) == 0));
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, nonce_function_test_retry, extra) == 1);
+ CHECK(!is_empty_signature(&sig));
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, nonce_function_rfc6979, extra) == 1);
+ CHECK(!is_empty_signature(&sig2));
+ CHECK(memcmp(&sig, &sig2, sizeof(sig)) == 0);
/* The default nonce function is determinstic. */
- siglen = 72;
- siglen2 = 72;
- CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, NULL, extra) == 1);
- CHECK(siglen > 0);
- CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, extra) == 1);
- CHECK(siglen2 > 0);
- CHECK((siglen == siglen2) && (memcmp(sig, sig2, siglen) == 0));
- CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, NULL, extra, &recid) == 1);
- CHECK(!is_empty_compact_signature(sig));
- CHECK(secp256k1_ecdsa_sign_compact(msg, sig2, key, NULL, extra, &recid2) == 1);
- CHECK(!is_empty_compact_signature(sig));
- CHECK((recid == recid2) && (memcmp(sig, sig2, 64) == 0));
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, NULL, extra) == 1);
+ CHECK(!is_empty_signature(&sig2));
+ CHECK(memcmp(&sig, &sig2, sizeof(sig)) == 0);
/* The default nonce function changes output with different messages. */
for(i = 0; i < 256; i++) {
int j;
- siglen2 = 72;
msg[0] = i;
- CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, extra) == 1);
- CHECK(!is_empty_compact_signature(sig));
- CHECK(secp256k1_ecdsa_sig_parse(&s[i], sig2, siglen2));
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, NULL, extra) == 1);
+ CHECK(!is_empty_signature(&sig2));
+ secp256k1_ecdsa_signature_load(ctx, &sr[i], &ss, &sig2);
for (j = 0; j < i; j++) {
- CHECK(!secp256k1_scalar_eq(&s[i].r, &s[j].r));
+ CHECK(!secp256k1_scalar_eq(&sr[i], &sr[j]));
}
}
msg[0] = 0;
@@ -1735,12 +2136,12 @@ void test_ecdsa_edge_cases(void) {
/* The default nonce function changes output with different keys. */
for(i = 256; i < 512; i++) {
int j;
- siglen2 = 72;
key[0] = i - 256;
- CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, extra) == 1);
- CHECK(secp256k1_ecdsa_sig_parse(&s[i], sig2, siglen2));
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, NULL, extra) == 1);
+ CHECK(!is_empty_signature(&sig2));
+ secp256k1_ecdsa_signature_load(ctx, &sr[i], &ss, &sig2);
for (j = 0; j < i; j++) {
- CHECK(!secp256k1_scalar_eq(&s[i].r, &s[j].r));
+ CHECK(!secp256k1_scalar_eq(&sr[i], &sr[j]));
}
}
key[0] = 0;
@@ -1755,9 +2156,10 @@ void test_ecdsa_edge_cases(void) {
0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41,
};
- int outlen = 300;
- CHECK(!secp256k1_ec_privkey_export(seckey, privkey, &outlen, 0));
- CHECK(!secp256k1_ec_privkey_export(seckey, privkey, &outlen, 1));
+ size_t outlen = 300;
+ CHECK(!secp256k1_ec_privkey_export(ctx, privkey, &outlen, seckey, 0));
+ outlen = 300;
+ CHECK(!secp256k1_ec_privkey_export(ctx, privkey, &outlen, seckey, SECP256K1_EC_COMPRESSED));
}
}
@@ -1766,46 +2168,46 @@ void run_ecdsa_edge_cases(void) {
}
#ifdef ENABLE_OPENSSL_TESTS
-EC_KEY *get_openssl_key(const secp256k1_scalar_t *key) {
+EC_KEY *get_openssl_key(const secp256k1_scalar *key) {
unsigned char privkey[300];
- int privkeylen;
+ size_t privkeylen;
const unsigned char* pbegin = privkey;
int compr = secp256k1_rand32() & 1;
EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_secp256k1);
- CHECK(secp256k1_eckey_privkey_serialize(privkey, &privkeylen, key, compr));
+ CHECK(secp256k1_eckey_privkey_serialize(&ctx->ecmult_gen_ctx, privkey, &privkeylen, key, compr ? SECP256K1_EC_COMPRESSED : 0));
CHECK(d2i_ECPrivateKey(&ec_key, &pbegin, privkeylen));
CHECK(EC_KEY_check_key(ec_key));
return ec_key;
}
void test_ecdsa_openssl(void) {
- secp256k1_gej_t qj;
- secp256k1_ge_t q;
- secp256k1_ecdsa_sig_t sig;
- secp256k1_scalar_t one;
- secp256k1_scalar_t msg2;
- secp256k1_scalar_t key, msg;
+ secp256k1_gej qj;
+ secp256k1_ge q;
+ secp256k1_scalar sigr, sigs;
+ secp256k1_scalar one;
+ secp256k1_scalar msg2;
+ secp256k1_scalar key, msg;
EC_KEY *ec_key;
unsigned int sigsize = 80;
- int secp_sigsize = 80;
+ size_t secp_sigsize = 80;
unsigned char message[32];
unsigned char signature[80];
secp256k1_rand256_test(message);
secp256k1_scalar_set_b32(&msg, message, NULL);
random_scalar_order_test(&key);
- secp256k1_ecmult_gen(&qj, &key);
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &qj, &key);
secp256k1_ge_set_gej(&q, &qj);
ec_key = get_openssl_key(&key);
- CHECK(ec_key);
+ CHECK(ec_key != NULL);
CHECK(ECDSA_sign(0, message, sizeof(message), signature, &sigsize, ec_key));
- CHECK(secp256k1_ecdsa_sig_parse(&sig, signature, sigsize));
- CHECK(secp256k1_ecdsa_sig_verify(&sig, &q, &msg));
+ CHECK(secp256k1_ecdsa_sig_parse(&sigr, &sigs, signature, sigsize));
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sigr, &sigs, &q, &msg));
secp256k1_scalar_set_int(&one, 1);
secp256k1_scalar_add(&msg2, &msg, &one);
- CHECK(!secp256k1_ecdsa_sig_verify(&sig, &q, &msg2));
+ CHECK(!secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sigr, &sigs, &q, &msg2));
- random_sign(&sig, &key, &msg, NULL);
- CHECK(secp256k1_ecdsa_sig_serialize(signature, &secp_sigsize, &sig));
+ random_sign(&sigr, &sigs, &key, &msg, NULL);
+ CHECK(secp256k1_ecdsa_sig_serialize(signature, &secp_sigsize, &sigr, &sigs));
CHECK(ECDSA_verify(0, message, sizeof(message), signature, secp_sigsize, ec_key) == 1);
EC_KEY_free(ec_key);
@@ -1819,6 +2221,18 @@ void run_ecdsa_openssl(void) {
}
#endif
+#ifdef ENABLE_MODULE_ECDH
+# include "modules/ecdh/tests_impl.h"
+#endif
+
+#ifdef ENABLE_MODULE_SCHNORR
+# include "modules/schnorr/tests_impl.h"
+#endif
+
+#ifdef ENABLE_MODULE_RECOVERY
+# include "modules/recovery/tests_impl.h"
+#endif
+
int main(int argc, char **argv) {
unsigned char seed16[16] = {0};
unsigned char run32[32] = {0};
@@ -1843,7 +2257,7 @@ int main(int argc, char **argv) {
}
} else {
FILE *frand = fopen("/dev/urandom", "r");
- if (!frand || !fread(&seed16, sizeof(seed16), 1, frand)) {
+ if ((frand == NULL) || !fread(&seed16, sizeof(seed16), 1, frand)) {
uint64_t t = time(NULL) * (uint64_t)1337;
seed16[0] ^= t;
seed16[1] ^= t >> 8;
@@ -1862,10 +2276,13 @@ int main(int argc, char **argv) {
printf("random seed = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", seed16[0], seed16[1], seed16[2], seed16[3], seed16[4], seed16[5], seed16[6], seed16[7], seed16[8], seed16[9], seed16[10], seed16[11], seed16[12], seed16[13], seed16[14], seed16[15]);
/* initialize */
- secp256k1_start(SECP256K1_START_SIGN | SECP256K1_START_VERIFY);
+ run_context_tests();
+ ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
- /* initializing a second time shouldn't cause any harm or memory leaks. */
- secp256k1_start(SECP256K1_START_SIGN | SECP256K1_START_VERIFY);
+ if (secp256k1_rand32() & 1) {
+ secp256k1_rand256(run32);
+ CHECK(secp256k1_context_randomize(ctx, (secp256k1_rand32() & 1) ? run32 : NULL));
+ }
run_sha256_tests();
run_hmac_sha256_tests();
@@ -1895,6 +2312,20 @@ int main(int argc, char **argv) {
run_wnaf();
run_point_times_order();
run_ecmult_chain();
+ run_ecmult_constants();
+ run_ecmult_gen_blind();
+ run_ecmult_const_tests();
+ run_ec_combine();
+
+ /* endomorphism tests */
+#ifdef USE_ENDOMORPHISM
+ run_endomorphism_tests();
+#endif
+
+#ifdef ENABLE_MODULE_ECDH
+ /* ecdh tests */
+ run_ecdh_tests();
+#endif
/* ecdsa tests */
run_random_pubkeys();
@@ -1905,13 +2336,22 @@ int main(int argc, char **argv) {
run_ecdsa_openssl();
#endif
+#ifdef ENABLE_MODULE_SCHNORR
+ /* Schnorr tests */
+ run_schnorr_tests();
+#endif
+
+#ifdef ENABLE_MODULE_RECOVERY
+ /* ECDSA pubkey recovery tests */
+ run_recovery_tests();
+#endif
+
secp256k1_rand256(run32);
printf("random run = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", run32[0], run32[1], run32[2], run32[3], run32[4], run32[5], run32[6], run32[7], run32[8], run32[9], run32[10], run32[11], run32[12], run32[13], run32[14], run32[15]);
/* shutdown */
- secp256k1_stop();
+ secp256k1_context_destroy(ctx);
- /* shutting down twice shouldn't cause any double frees. */
- secp256k1_stop();
+ printf("no problems found\n");
return 0;
}
diff --git a/crypto/secp256k1/secp256k1/src/util.h b/crypto/secp256k1/libsecp256k1/src/util.h
index ae98639f7..4eef4ded4 100644
--- a/crypto/secp256k1/secp256k1/src/util.h
+++ b/crypto/secp256k1/libsecp256k1/src/util.h
@@ -15,6 +15,15 @@
#include <stdint.h>
#include <stdio.h>
+typedef struct {
+ void (*fn)(const char *text, void* data);
+ const void* data;
+} secp256k1_callback;
+
+static SECP256K1_INLINE void secp256k1_callback_call(const secp256k1_callback * const cb, const char * const text) {
+ cb->fn(text, (void*)cb->data);
+}
+
#ifdef DETERMINISTIC
#define TEST_FAILURE(msg) do { \
fprintf(stderr, "%s\n", msg); \
@@ -47,23 +56,20 @@
} while(0)
#endif
-/* Like assert(), but safe to use on expressions with side effects. */
-#ifndef NDEBUG
-#define DEBUG_CHECK CHECK
-#else
-#define DEBUG_CHECK(cond) do { (void)(cond); } while(0)
-#endif
-
-/* Like DEBUG_CHECK(), but when VERIFY is defined instead of NDEBUG not defined. */
+/* Like assert(), but when VERIFY is defined, and side-effect safe. */
#ifdef VERIFY
#define VERIFY_CHECK CHECK
+#define VERIFY_SETUP(stmt) do { stmt; } while(0)
#else
#define VERIFY_CHECK(cond) do { (void)(cond); } while(0)
+#define VERIFY_SETUP(stmt)
#endif
-static SECP256K1_INLINE void *checked_malloc(size_t size) {
+static SECP256K1_INLINE void *checked_malloc(const secp256k1_callback* cb, size_t size) {
void *ret = malloc(size);
- CHECK(ret != NULL);
+ if (ret == NULL) {
+ secp256k1_callback_call(cb, "Out of memory");
+ }
return ret;
}
diff --git a/crypto/secp256k1/secp256.go b/crypto/secp256k1/secp256.go
index 7baa456bf..88b43034f 100644
--- a/crypto/secp256k1/secp256.go
+++ b/crypto/secp256k1/secp256.go
@@ -19,7 +19,7 @@ package secp256k1
// TODO: set USE_SCALAR_4X64 depending on platform?
/*
-#cgo CFLAGS: -I./secp256k1
+#cgo CFLAGS: -I./libsecp256k1
#cgo darwin CFLAGS: -I/usr/local/include
#cgo freebsd CFLAGS: -I/usr/local/include
#cgo linux,arm CFLAGS: -I/usr/local/arm/include
@@ -33,7 +33,8 @@ package secp256k1
#define USE_SCALAR_8X32
#define USE_SCALAR_INV_BUILTIN
#define NDEBUG
-#include "./secp256k1/src/secp256k1.c"
+#include "./libsecp256k1/src/secp256k1.c"
+#include "./libsecp256k1/src/modules/recovery/main_impl.h"
*/
import "C"
@@ -48,48 +49,51 @@ import (
//#define USE_FIELD_5X64
/*
- Todo:
- > Centralize key management in module
- > add pubkey/private key struct
- > Dont let keys leave module; address keys as ints
-
+ TODO:
> store private keys in buffer and shuffle (deters persistance on swap disc)
- > Byte permutation (changing)
+ > byte permutation (changing)
> xor with chaning random block (to deter scanning memory for 0x63) (stream cipher?)
-
- On Disk
- > Store keys in wallets
- > use slow key derivation function for wallet encryption key (2 seconds)
+ > on disk: store keys in wallets
*/
-func init() {
- //takes 10ms to 100ms
- C.secp256k1_start(3) // SECP256K1_START_SIGN | SECP256K1_START_VERIFY
-}
+// holds ptr to secp256k1_context_struct (see secp256k1/include/secp256k1.h)
+var context *C.secp256k1_context
-func Stop() {
- C.secp256k1_stop()
+func init() {
+ // around 20 ms on a modern CPU.
+ context = C.secp256k1_context_create(3) // SECP256K1_START_SIGN | SECP256K1_START_VERIFY
}
func GenerateKeyPair() ([]byte, []byte) {
-
- pubkey_len := C.int(65)
- const seckey_len = 32
-
- var pubkey []byte = make([]byte, pubkey_len)
- var seckey []byte = randentropy.GetEntropyCSPRNG(seckey_len)
-
- var pubkey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&pubkey[0]))
+ var seckey []byte = randentropy.GetEntropyCSPRNG(32)
var seckey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&seckey[0]))
+ var pubkey64 []byte = make([]byte, 64) // secp256k1_pubkey
+ var pubkey65 []byte = make([]byte, 65) // 65 byte uncompressed pubkey
+ pubkey64_ptr := (*C.secp256k1_pubkey)(unsafe.Pointer(&pubkey64[0]))
+ pubkey65_ptr := (*C.uchar)(unsafe.Pointer(&pubkey65[0]))
+
ret := C.secp256k1_ec_pubkey_create(
- pubkey_ptr, &pubkey_len,
- seckey_ptr, 0)
+ context,
+ pubkey64_ptr,
+ seckey_ptr,
+ )
if ret != C.int(1) {
- return GenerateKeyPair() //invalid secret, try again
+ return GenerateKeyPair() // invalid secret, try again
}
- return pubkey, seckey
+
+ var output_len C.size_t
+
+ C.secp256k1_ec_pubkey_serialize( // always returns 1
+ context,
+ pubkey65_ptr,
+ &output_len,
+ pubkey64_ptr,
+ 0, // SECP256K1_EC_COMPRESSED
+ )
+
+ return pubkey65, seckey
}
func GeneratePubKey(seckey []byte) ([]byte, error) {
@@ -97,17 +101,16 @@ func GeneratePubKey(seckey []byte) ([]byte, error) {
return nil, err
}
- pubkey_len := C.int(65)
- const seckey_len = 32
+ var pubkey []byte = make([]byte, 64)
+ var pubkey_ptr *C.secp256k1_pubkey = (*C.secp256k1_pubkey)(unsafe.Pointer(&pubkey[0]))
- var pubkey []byte = make([]byte, pubkey_len)
-
- var pubkey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&pubkey[0]))
var seckey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&seckey[0]))
ret := C.secp256k1_ec_pubkey_create(
- pubkey_ptr, &pubkey_len,
- seckey_ptr, 0)
+ context,
+ pubkey_ptr,
+ seckey_ptr,
+ )
if ret != C.int(1) {
return nil, errors.New("Unable to generate pubkey from seckey")
@@ -117,38 +120,48 @@ func GeneratePubKey(seckey []byte) ([]byte, error) {
}
func Sign(msg []byte, seckey []byte) ([]byte, error) {
- nonce := randentropy.GetEntropyCSPRNG(32)
+ msg_ptr := (*C.uchar)(unsafe.Pointer(&msg[0]))
+ seckey_ptr := (*C.uchar)(unsafe.Pointer(&seckey[0]))
- var sig []byte = make([]byte, 65)
- var recid C.int
+ sig := make([]byte, 65)
+ sig_ptr := (*C.secp256k1_ecdsa_recoverable_signature)(unsafe.Pointer(&sig[0]))
- var msg_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&msg[0]))
- var sig_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&sig[0]))
- var seckey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&seckey[0]))
+ nonce := randentropy.GetEntropyCSPRNG(32)
+ ndata_ptr := unsafe.Pointer(&nonce[0])
- var noncefp_ptr = &(*C.secp256k1_nonce_function_default)
- var ndata_ptr = unsafe.Pointer(&nonce[0])
+ noncefp_ptr := &(*C.secp256k1_nonce_function_default)
- if C.secp256k1_ec_seckey_verify(seckey_ptr) != C.int(1) {
+ if C.secp256k1_ec_seckey_verify(context, seckey_ptr) != C.int(1) {
return nil, errors.New("Invalid secret key")
}
- ret := C.secp256k1_ecdsa_sign_compact(
- msg_ptr,
+ ret := C.secp256k1_ecdsa_sign_recoverable(
+ context,
sig_ptr,
+ msg_ptr,
seckey_ptr,
noncefp_ptr,
ndata_ptr,
- &recid)
-
- sig[64] = byte(int(recid))
+ )
- if ret != C.int(1) {
- // nonce invalid, retry
- return Sign(msg, seckey)
+ if ret == C.int(0) {
+ return Sign(msg, seckey) //invalid secret, try again
}
- return sig, nil
+ sig_serialized := make([]byte, 65)
+ sig_serialized_ptr := (*C.uchar)(unsafe.Pointer(&sig_serialized[0]))
+ var recid C.int
+
+ C.secp256k1_ecdsa_recoverable_signature_serialize_compact(
+ context,
+ sig_serialized_ptr, // 64 byte compact signature
+ &recid,
+ sig_ptr, // 65 byte "recoverable" signature
+ )
+
+ sig_serialized[64] = byte(int(recid)) // add back recid to get 65 bytes sig
+
+ return sig_serialized, nil
}
@@ -157,26 +170,13 @@ func VerifySeckeyValidity(seckey []byte) error {
return errors.New("priv key is not 32 bytes")
}
var seckey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&seckey[0]))
- ret := C.secp256k1_ec_seckey_verify(seckey_ptr)
+ ret := C.secp256k1_ec_seckey_verify(context, seckey_ptr)
if int(ret) != 1 {
return errors.New("invalid seckey")
}
return nil
}
-func VerifyPubkeyValidity(pubkey []byte) error {
- if len(pubkey) != 65 {
- return errors.New("pub key is not 65 bytes")
- }
- var pubkey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&pubkey[0]))
- ret := C.secp256k1_ec_pubkey_verify(pubkey_ptr, 65)
- if int(ret) != 1 {
- return errors.New("invalid pubkey")
- }
-
- return nil
-}
-
func VerifySignatureValidity(sig []byte) bool {
//64+1
if len(sig) != 65 {
@@ -231,36 +231,58 @@ func VerifySignature(msg []byte, sig []byte, pubkey1 []byte) error {
return nil
}
-//recovers the public key from the signature
-//recovery of pubkey means correct signature
+// recovers a public key from the signature
func RecoverPubkey(msg []byte, sig []byte) ([]byte, error) {
if len(sig) != 65 {
return nil, errors.New("Invalid signature length")
}
- var pubkey []byte = make([]byte, 65)
-
- var msg_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&msg[0]))
- var sig_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&sig[0]))
- var pubkey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&pubkey[0]))
+ msg_ptr := (*C.uchar)(unsafe.Pointer(&msg[0]))
+ sig_ptr := (*C.uchar)(unsafe.Pointer(&sig[0]))
+
+ pubkey := make([]byte, 64)
+ /*
+ this slice is used for both the recoverable signature and the
+ resulting serialized pubkey (both types in libsecp256k1 are 65
+ bytes). this saves one allocation of 65 bytes, which is nice as
+ pubkey recovery is one bottleneck during load in Ethereum
+ */
+ bytes65 := make([]byte, 65)
+
+ pubkey_ptr := (*C.secp256k1_pubkey)(unsafe.Pointer(&pubkey[0]))
+ recoverable_sig_ptr := (*C.secp256k1_ecdsa_recoverable_signature)(unsafe.Pointer(&bytes65[0]))
+
+ recid := C.int(sig[64])
+ ret := C.secp256k1_ecdsa_recoverable_signature_parse_compact(
+ context,
+ recoverable_sig_ptr,
+ sig_ptr,
+ recid)
- var pubkeylen C.int
+ if ret == C.int(0) {
+ return nil, errors.New("Failed to parse signature")
+ }
- ret := C.secp256k1_ecdsa_recover_compact(
- msg_ptr,
- sig_ptr,
+ ret = C.secp256k1_ecdsa_recover(
+ context,
pubkey_ptr,
- &pubkeylen,
- C.int(0),
- C.int(sig[64]),
+ recoverable_sig_ptr,
+ msg_ptr,
)
if ret == C.int(0) {
return nil, errors.New("Failed to recover public key")
- } else if pubkeylen != C.int(65) {
- return nil, errors.New("Impossible Error: Invalid recovered public key length")
} else {
- return pubkey, nil
+ serialized_pubkey_ptr := (*C.uchar)(unsafe.Pointer(&bytes65[0]))
+
+ var output_len C.size_t
+ C.secp256k1_ec_pubkey_serialize( // always returns 1
+ context,
+ serialized_pubkey_ptr,
+ &output_len,
+ pubkey_ptr,
+ 0, // SECP256K1_EC_COMPRESSED
+ )
+ return bytes65, nil
}
- return nil, errors.New("Impossible Error: func RecoverPubkey has reached an unreachable state")
}
diff --git a/crypto/secp256k1/secp256_test.go b/crypto/secp256k1/secp256_test.go
index deeec98d5..45c448f3c 100644
--- a/crypto/secp256k1/secp256_test.go
+++ b/crypto/secp256k1/secp256_test.go
@@ -18,169 +18,130 @@ package secp256k1
import (
"bytes"
- "fmt"
- "log"
+ "encoding/hex"
"testing"
"github.com/ethereum/go-ethereum/crypto/randentropy"
)
-const TESTS = 10000 // how many tests
-const SigSize = 65 //64+1
+const TestCount = 10000
-func Test_Secp256_00(t *testing.T) {
-
- var nonce []byte = randentropy.GetEntropyCSPRNG(32) //going to get bitcoins stolen!
-
- if len(nonce) != 32 {
- t.Fatal()
- }
-
-}
-
-//tests for Malleability
-//highest bit of S must be 0; 32nd byte
-func CompactSigTest(sig []byte) {
-
- var b int = int(sig[32])
- if b < 0 {
- log.Panic()
- }
- if ((b >> 7) == 1) != ((b & 0x80) == 0x80) {
- log.Panic("b= %v b2= %v \n", b, b>>7)
- }
- if (b & 0x80) == 0x80 {
- log.Panic("b= %v b2= %v \n", b, b&0x80)
- }
-}
-
-//test pubkey/private generation
-func Test_Secp256_01(t *testing.T) {
- pubkey, seckey := GenerateKeyPair()
+func TestPrivkeyGenerate(t *testing.T) {
+ _, seckey := GenerateKeyPair()
if err := VerifySeckeyValidity(seckey); err != nil {
- t.Fatal()
- }
- if err := VerifyPubkeyValidity(pubkey); err != nil {
- t.Fatal()
+ t.Errorf("seckey not valid: %s", err)
}
}
-//test size of messages
-func Test_Secp256_02s(t *testing.T) {
+func TestSignatureValidity(t *testing.T) {
pubkey, seckey := GenerateKeyPair()
msg := randentropy.GetEntropyCSPRNG(32)
- sig, _ := Sign(msg, seckey)
- CompactSigTest(sig)
- if sig == nil {
- t.Fatal("Signature nil")
+ sig, err := Sign(msg, seckey)
+ if err != nil {
+ t.Errorf("signature error: %s", err)
}
+ compactSigCheck(t, sig)
if len(pubkey) != 65 {
- t.Fail()
+ t.Errorf("pubkey length mismatch: want: 65 have: %d", len(pubkey))
}
if len(seckey) != 32 {
- t.Fail()
+ t.Errorf("seckey length mismatch: want: 32 have: %d", len(seckey))
}
- if len(sig) != 64+1 {
- t.Fail()
+ if len(sig) != 65 {
+ t.Errorf("sig length mismatch: want: 65 have: %d", len(sig))
+ }
+ recid := int(sig[64])
+ if recid > 4 || recid < 0 {
+ t.Errorf("sig recid mismatch: want: within 0 to 4 have: %d", int(sig[64]))
}
- if int(sig[64]) > 4 {
- t.Fail()
- } //should be 0 to 4
}
-//test signing message
-func Test_Secp256_02(t *testing.T) {
+func TestSignAndRecover(t *testing.T) {
pubkey1, seckey := GenerateKeyPair()
msg := randentropy.GetEntropyCSPRNG(32)
- sig, _ := Sign(msg, seckey)
- if sig == nil {
- t.Fatal("Signature nil")
+ sig, err := Sign(msg, seckey)
+ if err != nil {
+ t.Errorf("signature error: %s", err)
}
-
- pubkey2, _ := RecoverPubkey(msg, sig)
- if pubkey2 == nil {
- t.Fatal("Recovered pubkey invalid")
+ pubkey2, err := RecoverPubkey(msg, sig)
+ if err != nil {
+ t.Errorf("recover error: %s", err)
}
- if bytes.Equal(pubkey1, pubkey2) == false {
- t.Fatal("Recovered pubkey does not match")
+ if !bytes.Equal(pubkey1, pubkey2) {
+ t.Errorf("pubkey mismatch: want: %x have: %x", pubkey1, pubkey2)
}
-
- err := VerifySignature(msg, sig, pubkey1)
+ err = VerifySignature(msg, sig, pubkey1)
if err != nil {
- t.Fatal("Signature invalid")
+ t.Errorf("signature verification error: %s", err)
}
}
-//test pubkey recovery
-func Test_Secp256_02a(t *testing.T) {
- pubkey1, seckey1 := GenerateKeyPair()
- msg := randentropy.GetEntropyCSPRNG(32)
- sig, _ := Sign(msg, seckey1)
-
- if sig == nil {
- t.Fatal("Signature nil")
- }
- err := VerifySignature(msg, sig, pubkey1)
- if err != nil {
- t.Fatal("Signature invalid")
+func TestRandomMessagesWithSameKey(t *testing.T) {
+ pubkey, seckey := GenerateKeyPair()
+ keys := func() ([]byte, []byte) {
+ // Sign function zeroes the privkey so we need a new one in each call
+ newkey := make([]byte, len(seckey))
+ copy(newkey, seckey)
+ return pubkey, newkey
}
+ signAndRecoverWithRandomMessages(t, keys)
+}
- pubkey2, _ := RecoverPubkey(msg, sig)
- if len(pubkey1) != len(pubkey2) {
- t.Fatal()
- }
- for i, _ := range pubkey1 {
- if pubkey1[i] != pubkey2[i] {
- t.Fatal()
- }
- }
- if bytes.Equal(pubkey1, pubkey2) == false {
- t.Fatal()
+func TestRandomMessagesWithRandomKeys(t *testing.T) {
+ keys := func() ([]byte, []byte) {
+ pubkey, seckey := GenerateKeyPair()
+ return pubkey, seckey
}
+ signAndRecoverWithRandomMessages(t, keys)
}
-//test random messages for the same pub/private key
-func Test_Secp256_03(t *testing.T) {
- _, seckey := GenerateKeyPair()
- for i := 0; i < TESTS; i++ {
+func signAndRecoverWithRandomMessages(t *testing.T, keys func() ([]byte, []byte)) {
+ for i := 0; i < TestCount; i++ {
+ pubkey1, seckey := keys()
msg := randentropy.GetEntropyCSPRNG(32)
- sig, _ := Sign(msg, seckey)
- CompactSigTest(sig)
+ sig, err := Sign(msg, seckey)
+ if err != nil {
+ t.Fatalf("signature error: %s", err)
+ }
+ if sig == nil {
+ t.Fatal("signature is nil")
+ }
+ compactSigCheck(t, sig)
+ // TODO: why do we flip around the recovery id?
sig[len(sig)-1] %= 4
- pubkey2, _ := RecoverPubkey(msg, sig)
+
+ pubkey2, err := RecoverPubkey(msg, sig)
+ if err != nil {
+ t.Fatalf("recover error: %s", err)
+ }
if pubkey2 == nil {
- t.Fail()
+ t.Error("pubkey is nil")
+ }
+ if !bytes.Equal(pubkey1, pubkey2) {
+ t.Fatalf("pubkey mismatch: want: %x have: %x", pubkey1, pubkey2)
}
}
}
-//test random messages for different pub/private keys
-func Test_Secp256_04(t *testing.T) {
- for i := 0; i < TESTS; i++ {
- pubkey1, seckey := GenerateKeyPair()
- msg := randentropy.GetEntropyCSPRNG(32)
- sig, _ := Sign(msg, seckey)
- CompactSigTest(sig)
+func TestRecoveryOfRandomSignature(t *testing.T) {
+ pubkey1, seckey := GenerateKeyPair()
+ msg := randentropy.GetEntropyCSPRNG(32)
+ sig, err := Sign(msg, seckey)
+ if err != nil {
+ t.Errorf("signature error: %s", err)
+ }
- if sig[len(sig)-1] >= 4 {
- t.Fail()
- }
+ for i := 0; i < TestCount; i++ {
+ sig = randSig()
pubkey2, _ := RecoverPubkey(msg, sig)
- if pubkey2 == nil {
- t.Fail()
- }
- if bytes.Equal(pubkey1, pubkey2) == false {
- t.Fail()
+ // recovery can sometimes work, but if so should always give wrong pubkey
+ if bytes.Equal(pubkey1, pubkey2) {
+ t.Fatalf("iteration: %d: pubkey mismatch: do NOT want %x: ", i, pubkey2)
}
}
}
-//test random signatures against fixed messages; should fail
-
-//crashes:
-// -SIPA look at this
-
func randSig() []byte {
sig := randentropy.GetEntropyCSPRNG(65)
sig[32] &= 0x70
@@ -188,67 +149,83 @@ func randSig() []byte {
return sig
}
-func Test_Secp256_06a_alt0(t *testing.T) {
+func TestRandomMessagesAgainstValidSig(t *testing.T) {
pubkey1, seckey := GenerateKeyPair()
msg := randentropy.GetEntropyCSPRNG(32)
sig, _ := Sign(msg, seckey)
- if sig == nil {
- t.Fail()
- }
- if len(sig) != 65 {
- t.Fail()
- }
- for i := 0; i < TESTS; i++ {
- sig = randSig()
+ for i := 0; i < TestCount; i++ {
+ msg = randentropy.GetEntropyCSPRNG(32)
pubkey2, _ := RecoverPubkey(msg, sig)
-
- if bytes.Equal(pubkey1, pubkey2) == true {
- t.Fail()
- }
-
- if pubkey2 != nil && VerifySignature(msg, sig, pubkey2) != nil {
- t.Fail()
- }
-
- if VerifySignature(msg, sig, pubkey1) == nil {
- t.Fail()
+ // recovery can sometimes work, but if so should always give wrong pubkey
+ if bytes.Equal(pubkey1, pubkey2) {
+ t.Fatalf("iteration: %d: pubkey mismatch: do NOT want %x: ", i, pubkey2)
}
}
}
-//test random messages against valid signature: should fail
-
-func Test_Secp256_06b(t *testing.T) {
- pubkey1, seckey := GenerateKeyPair()
- msg := randentropy.GetEntropyCSPRNG(32)
- sig, _ := Sign(msg, seckey)
+func TestZeroPrivkey(t *testing.T) {
+ zeroedBytes := make([]byte, 32)
+ err := VerifySeckeyValidity(zeroedBytes)
+ if err == nil {
+ t.Errorf("zeroed bytes should have returned error")
+ }
+}
- fail_count := 0
- for i := 0; i < TESTS; i++ {
- msg = randentropy.GetEntropyCSPRNG(32)
- pubkey2, _ := RecoverPubkey(msg, sig)
- if bytes.Equal(pubkey1, pubkey2) == true {
- t.Fail()
- }
+// Useful when the underlying libsecp256k1 API changes to quickly
+// check only recover function without use of signature function
+func TestRecoverSanity(t *testing.T) {
+ msg, _ := hex.DecodeString("ce0677bb30baa8cf067c88db9811f4333d131bf8bcf12fe7065d211dce971008")
+ sig, _ := hex.DecodeString("90f27b8b488db00b00606796d2987f6a5f59ae62ea05effe84fef5b8b0e549984a691139ad57a3f0b906637673aa2f63d1f55cb1a69199d4009eea23ceaddc9301")
+ pubkey1, _ := hex.DecodeString("04e32df42865e97135acfb65f3bae71bdc86f4d49150ad6a440b6f15878109880a0a2b2667f7e725ceea70c673093bf67663e0312623c8e091b13cf2c0f11ef652")
+ pubkey2, err := RecoverPubkey(msg, sig)
+ if err != nil {
+ t.Fatalf("recover error: %s", err)
+ }
+ if !bytes.Equal(pubkey1, pubkey2) {
+ t.Errorf("pubkey mismatch: want: %x have: %x", pubkey1, pubkey2)
+ }
+}
- if pubkey2 != nil && VerifySignature(msg, sig, pubkey2) != nil {
- t.Fail()
- }
+// tests for malleability
+// highest bit of signature ECDSA s value must be 0, in the 33th byte
+func compactSigCheck(t *testing.T, sig []byte) {
+ var b int = int(sig[32])
+ if b < 0 {
+ t.Errorf("highest bit is negative: %d", b)
+ }
+ if ((b >> 7) == 1) != ((b & 0x80) == 0x80) {
+ t.Errorf("highest bit: %d bit >> 7: %d", b, b>>7)
+ }
+ if (b & 0x80) == 0x80 {
+ t.Errorf("highest bit: %d bit & 0x80: %d", b, b&0x80)
+ }
+}
- if VerifySignature(msg, sig, pubkey1) == nil {
- t.Fail()
+// godep go test -v -run=XXX -bench=BenchmarkSignRandomInputEachRound
+// add -benchtime=10s to benchmark longer for more accurate average
+func BenchmarkSignRandomInputEachRound(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ b.StopTimer()
+ _, seckey := GenerateKeyPair()
+ msg := randentropy.GetEntropyCSPRNG(32)
+ b.StartTimer()
+ if _, err := Sign(msg, seckey); err != nil {
+ b.Fatal(err)
}
}
- if fail_count != 0 {
- fmt.Printf("ERROR: Accepted signature for %v of %v random messages\n", fail_count, TESTS)
- }
}
-func TestInvalidKey(t *testing.T) {
- p1 := make([]byte, 32)
- err := VerifySeckeyValidity(p1)
- if err == nil {
- t.Errorf("pvk %x varify sec key should have returned error", p1)
+//godep go test -v -run=XXX -bench=BenchmarkRecoverRandomInputEachRound
+func BenchmarkRecoverRandomInputEachRound(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ b.StopTimer()
+ _, seckey := GenerateKeyPair()
+ msg := randentropy.GetEntropyCSPRNG(32)
+ sig, _ := Sign(msg, seckey)
+ b.StartTimer()
+ if _, err := RecoverPubkey(msg, sig); err != nil {
+ b.Fatal(err)
+ }
}
}
diff --git a/crypto/secp256k1/secp256k1/.travis.yml b/crypto/secp256k1/secp256k1/.travis.yml
deleted file mode 100644
index 40f8dae23..000000000
--- a/crypto/secp256k1/secp256k1/.travis.yml
+++ /dev/null
@@ -1,32 +0,0 @@
-language: c
-compiler:
- - clang
- - gcc
-install:
- - sudo apt-get install -qq libssl-dev
- - if [ "$BIGNUM" = "gmp" -o "$BIGNUM" = "auto" ]; then sudo apt-get install --no-install-recommends --no-upgrade -qq libgmp-dev; fi
- - if [ -n "$EXTRAPACKAGES" ]; then sudo apt-get update && sudo apt-get install --no-install-recommends --no-upgrade $EXTRAPACKAGES; fi
-env:
- global:
- - FIELD=auto BIGNUM=auto SCALAR=auto ENDOMORPHISM=no ASM=no BUILD=check EXTRAFLAGS= HOST= EXTRAPACKAGES=
- matrix:
- - SCALAR=32bit
- - SCALAR=64bit
- - FIELD=64bit
- - FIELD=64bit ENDOMORPHISM=yes
- - FIELD=64bit ASM=x86_64
- - FIELD=64bit ENDOMORPHISM=yes ASM=x86_64
- - FIELD=32bit
- - FIELD=32bit ENDOMORPHISM=yes
- - BIGNUM=no
- - BIGNUM=no ENDOMORPHISM=yes
- - BUILD=distcheck
- - EXTRAFLAGS=CFLAGS=-DDETERMINISTIC
- - HOST=i686-linux-gnu EXTRAPACKAGES="gcc-multilib"
- - HOST=i686-linux-gnu EXTRAPACKAGES="gcc-multilib" ENDOMORPHISM=yes
-before_script: ./autogen.sh
-script:
- - if [ -n "$HOST" ]; then export USE_HOST="--host=$HOST"; fi
- - if [ "x$HOST" = "xi686-linux-gnu" ]; then export CC="$CC -m32"; fi
- - ./configure --enable-endomorphism=$ENDOMORPHISM --with-field=$FIELD --with-bignum=$BIGNUM --with-scalar=$SCALAR $EXTRAFLAGS $USE_HOST && make -j2 $BUILD
-os: linux
diff --git a/crypto/secp256k1/secp256k1/build-aux/m4/bitcoin_secp.m4 b/crypto/secp256k1/secp256k1/build-aux/m4/bitcoin_secp.m4
deleted file mode 100644
index 4a398d6c9..000000000
--- a/crypto/secp256k1/secp256k1/build-aux/m4/bitcoin_secp.m4
+++ /dev/null
@@ -1,61 +0,0 @@
-dnl libsecp25k1 helper checks
-AC_DEFUN([SECP_INT128_CHECK],[
-has_int128=$ac_cv_type___int128
-])
-
-dnl
-AC_DEFUN([SECP_64BIT_ASM_CHECK],[
-AC_MSG_CHECKING(for x86_64 assembly availability)
-AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
- #include <stdint.h>]],[[
- uint64_t a = 11, tmp;
- __asm__ __volatile__("movq $0x100000000,%1; mulq %%rsi" : "+a"(a) : "S"(tmp) : "cc", "%rdx");
- ]])],[has_64bit_asm=yes],[has_64bit_asm=no])
-AC_MSG_RESULT([$has_64bit_asm])
-])
-
-dnl
-AC_DEFUN([SECP_OPENSSL_CHECK],[
-if test x"$use_pkgconfig" = x"yes"; then
- : #NOP
- m4_ifdef([PKG_CHECK_MODULES],[
- PKG_CHECK_MODULES([CRYPTO], [libcrypto], [has_libcrypto=yes],[has_libcrypto=no])
- if test x"$has_libcrypto" = x"yes"; then
- TEMP_LIBS="$LIBS"
- LIBS="$LIBS $CRYPTO_LIBS"
- AC_CHECK_LIB(crypto, main,[AC_DEFINE(HAVE_LIBCRYPTO,1,[Define this symbol if libcrypto is installed])],[has_libcrypto=no])
- LIBS="$TEMP_LIBS"
- fi
- ])
-else
- AC_CHECK_HEADER(openssl/crypto.h,[AC_CHECK_LIB(crypto, main,[has_libcrypto=yes; CRYPTO_LIBS=-lcrypto; AC_DEFINE(HAVE_LIBCRYPTO,1,[Define this symbol if libcrypto is installed])]
-)])
- LIBS=
-fi
-if test x"$has_libcrypto" = x"yes" && test x"$has_openssl_ec" = x; then
- AC_MSG_CHECKING(for EC functions in libcrypto)
- AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
- #include <openssl/ec.h>
- #include <openssl/ecdsa.h>
- #include <openssl/obj_mac.h>]],[[
- EC_KEY *eckey = EC_KEY_new_by_curve_name(NID_secp256k1);
- ECDSA_sign(0, NULL, 0, NULL, NULL, eckey);
- ECDSA_verify(0, NULL, 0, NULL, 0, eckey);
- EC_KEY_free(eckey);
- ]])],[has_openssl_ec=yes],[has_openssl_ec=no])
- AC_MSG_RESULT([$has_openssl_ec])
-fi
-])
-
-dnl
-AC_DEFUN([SECP_GMP_CHECK],[
-if test x"$has_gmp" != x"yes"; then
- CPPFLAGS_TEMP="$CPPFLAGS"
- CPPFLAGS="$GMP_CPPFLAGS $CPPFLAGS"
- LIBS_TEMP="$LIBS"
- LIBS="$GMP_LIBS $LIBS"
- AC_CHECK_HEADER(gmp.h,[AC_CHECK_LIB(gmp, __gmpz_init,[has_gmp=yes; GMP_LIBS="$GMP_LIBS -lgmp"; AC_DEFINE(HAVE_LIBGMP,1,[Define this symbol if libgmp is installed])])])
- CPPFLAGS="$CPPFLAGS_TEMP"
- LIBS="$LIBS_TEMP"
-fi
-])
diff --git a/crypto/secp256k1/secp256k1/include/secp256k1.h b/crypto/secp256k1/secp256k1/include/secp256k1.h
deleted file mode 100644
index a6e39d13d..000000000
--- a/crypto/secp256k1/secp256k1/include/secp256k1.h
+++ /dev/null
@@ -1,295 +0,0 @@
-#ifndef _SECP256K1_
-# define _SECP256K1_
-
-# ifdef __cplusplus
-extern "C" {
-# endif
-
-# if !defined(SECP256K1_GNUC_PREREQ)
-# if defined(__GNUC__)&&defined(__GNUC_MINOR__)
-# define SECP256K1_GNUC_PREREQ(_maj,_min) \
- ((__GNUC__<<16)+__GNUC_MINOR__>=((_maj)<<16)+(_min))
-# else
-# define SECP256K1_GNUC_PREREQ(_maj,_min) 0
-# endif
-# endif
-
-# if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L) )
-# if SECP256K1_GNUC_PREREQ(2,7)
-# define SECP256K1_INLINE __inline__
-# elif (defined(_MSC_VER))
-# define SECP256K1_INLINE __inline
-# else
-# define SECP256K1_INLINE
-# endif
-# else
-# define SECP256K1_INLINE inline
-# endif
-
-/**Warning attributes
- * NONNULL is not used if SECP256K1_BUILD is set to avoid the compiler optimizing out
- * some paranoid null checks. */
-# if defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
-# define SECP256K1_WARN_UNUSED_RESULT __attribute__ ((__warn_unused_result__))
-# else
-# define SECP256K1_WARN_UNUSED_RESULT
-# endif
-# if !defined(SECP256K1_BUILD) && defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
-# define SECP256K1_ARG_NONNULL(_x) __attribute__ ((__nonnull__(_x)))
-# else
-# define SECP256K1_ARG_NONNULL(_x)
-# endif
-
-
-/** Flags to pass to secp256k1_start. */
-# define SECP256K1_START_VERIFY (1 << 0)
-# define SECP256K1_START_SIGN (1 << 1)
-
-/** Initialize the library. This may take some time (10-100 ms).
- * You need to call this before calling any other function.
- * It cannot run in parallel with any other functions, but once
- * secp256k1_start() returns, all other functions are thread-safe.
- */
-void secp256k1_start(unsigned int flags);
-
-/** Free all memory associated with this library. After this, no
- * functions can be called anymore, except secp256k1_start()
- */
-void secp256k1_stop(void);
-
-/** Verify an ECDSA signature.
- * Returns: 1: correct signature
- * 0: incorrect signature
- * -1: invalid public key
- * -2: invalid signature
- * In: msg32: the 32-byte message hash being verified (cannot be NULL)
- * sig: the signature being verified (cannot be NULL)
- * siglen: the length of the signature
- * pubkey: the public key to verify with (cannot be NULL)
- * pubkeylen: the length of pubkey
- * Requires starting using SECP256K1_START_VERIFY.
- */
-SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(
- const unsigned char *msg32,
- const unsigned char *sig,
- int siglen,
- const unsigned char *pubkey,
- int pubkeylen
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4);
-
-/** A pointer to a function to deterministically generate a nonce.
- * Returns: 1 if a nonce was successfully generated. 0 will cause signing to fail.
- * In: msg32: the 32-byte message hash being verified (will not be NULL)
- * key32: pointer to a 32-byte secret key (will not be NULL)
- * attempt: how many iterations we have tried to find a nonce.
- * This will almost always be 0, but different attempt values
- * are required to result in a different nonce.
- * data: Arbitrary data pointer that is passed through.
- * Out: nonce32: pointer to a 32-byte array to be filled by the function.
- * Except for test cases, this function should compute some cryptographic hash of
- * the message, the key and the attempt.
- */
-typedef int (*secp256k1_nonce_function_t)(
- unsigned char *nonce32,
- const unsigned char *msg32,
- const unsigned char *key32,
- unsigned int attempt,
- const void *data
-);
-
-/** An implementation of RFC6979 (using HMAC-SHA256) as nonce generation function.
- * If a data pointer is passed, it is assumed to be a pointer to 32 bytes of
- * extra entropy.
- */
-extern const secp256k1_nonce_function_t secp256k1_nonce_function_rfc6979;
-
-/** A default safe nonce generation function (currently equal to secp256k1_nonce_function_rfc6979). */
-extern const secp256k1_nonce_function_t secp256k1_nonce_function_default;
-
-
-/** Create an ECDSA signature.
- * Returns: 1: signature created
- * 0: the nonce generation function failed, the private key was invalid, or there is not
- * enough space in the signature (as indicated by siglen).
- * In: msg32: the 32-byte message hash being signed (cannot be NULL)
- * seckey: pointer to a 32-byte secret key (cannot be NULL)
- * noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used
- * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL)
- * Out: sig: pointer to an array where the signature will be placed (cannot be NULL)
- * In/Out: siglen: pointer to an int with the length of sig, which will be updated
- * to contain the actual signature length (<=72). If 0 is returned, this will be
- * set to zero.
- * Requires starting using SECP256K1_START_SIGN.
- *
- * The sig always has an s value in the lower half of the range (From 0x1
- * to 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,
- * inclusive), unlike many other implementations.
- * With ECDSA a third-party can can forge a second distinct signature
- * of the same message given a single initial signature without knowing
- * the key by setting s to its additive inverse mod-order, 'flipping' the
- * sign of the random point R which is not included in the signature.
- * Since the forgery is of the same message this isn't universally
- * problematic, but in systems where message malleability or uniqueness
- * of signatures is important this can cause issues. This forgery can be
- * blocked by all verifiers forcing signers to use a canonical form. The
- * lower-S form reduces the size of signatures slightly on average when
- * variable length encodings (such as DER) are used and is cheap to
- * verify, making it a good choice. Security of always using lower-S is
- * assured because anyone can trivially modify a signature after the
- * fact to enforce this property. Adjusting it inside the signing
- * function avoids the need to re-serialize or have curve specific
- * constants outside of the library. By always using a canonical form
- * even in applications where it isn't needed it becomes possible to
- * impose a requirement later if a need is discovered.
- * No other forms of ECDSA malleability are known and none seem likely,
- * but there is no formal proof that ECDSA, even with this additional
- * restriction, is free of other malleability. Commonly used serialization
- * schemes will also accept various non-unique encodings, so care should
- * be taken when this property is required for an application.
- */
-int secp256k1_ecdsa_sign(
- const unsigned char *msg32,
- unsigned char *sig,
- int *siglen,
- const unsigned char *seckey,
- secp256k1_nonce_function_t noncefp,
- const void *ndata
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
-
-/** Create a compact ECDSA signature (64 byte + recovery id).
- * Returns: 1: signature created
- * 0: the nonce generation function failed, or the secret key was invalid.
- * In: msg32: the 32-byte message hash being signed (cannot be NULL)
- * seckey: pointer to a 32-byte secret key (cannot be NULL)
- * noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used
- * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL)
- * Out: sig: pointer to a 64-byte array where the signature will be placed (cannot be NULL)
- * In case 0 is returned, the returned signature length will be zero.
- * recid: pointer to an int, which will be updated to contain the recovery id (can be NULL)
- * Requires starting using SECP256K1_START_SIGN.
- */
-int secp256k1_ecdsa_sign_compact(
- const unsigned char *msg32,
- unsigned char *sig64,
- const unsigned char *seckey,
- secp256k1_nonce_function_t noncefp,
- const void *ndata,
- int *recid
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
-
-/** Recover an ECDSA public key from a compact signature.
- * Returns: 1: public key successfully recovered (which guarantees a correct signature).
- * 0: otherwise.
- * In: msg32: the 32-byte message hash assumed to be signed (cannot be NULL)
- * sig64: signature as 64 byte array (cannot be NULL)
- * compressed: whether to recover a compressed or uncompressed pubkey
- * recid: the recovery id (0-3, as returned by ecdsa_sign_compact)
- * Out: pubkey: pointer to a 33 or 65 byte array to put the pubkey (cannot be NULL)
- * pubkeylen: pointer to an int that will contain the pubkey length (cannot be NULL)
- * Requires starting using SECP256K1_START_VERIFY.
- */
-SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover_compact(
- const unsigned char *msg32,
- const unsigned char *sig64,
- unsigned char *pubkey,
- int *pubkeylen,
- int compressed,
- int recid
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
-
-/** Verify an ECDSA secret key.
- * Returns: 1: secret key is valid
- * 0: secret key is invalid
- * In: seckey: pointer to a 32-byte secret key (cannot be NULL)
- */
-SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify(const unsigned char *seckey) SECP256K1_ARG_NONNULL(1);
-
-/** Just validate a public key.
- * Returns: 1: valid public key
- * 0: invalid public key
- * In: pubkey: pointer to a 33-byte or 65-byte public key (cannot be NULL).
- * pubkeylen: length of pubkey
- */
-SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_verify(const unsigned char *pubkey, int pubkeylen) SECP256K1_ARG_NONNULL(1);
-
-/** Compute the public key for a secret key.
- * In: compressed: whether the computed public key should be compressed
- * seckey: pointer to a 32-byte private key (cannot be NULL)
- * Out: pubkey: pointer to a 33-byte (if compressed) or 65-byte (if uncompressed)
- * area to store the public key (cannot be NULL)
- * pubkeylen: pointer to int that will be updated to contains the pubkey's
- * length (cannot be NULL)
- * Returns: 1: secret was valid, public key stores
- * 0: secret was invalid, try again.
- * Requires starting using SECP256K1_START_SIGN.
- */
-SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create(
- unsigned char *pubkey,
- int *pubkeylen,
- const unsigned char *seckey,
- int compressed
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
-
-/** Decompress a public key.
- * In/Out: pubkey: pointer to a 65-byte array to put the decompressed public key.
- It must contain a 33-byte or 65-byte public key already (cannot be NULL)
- * pubkeylen: pointer to the size of the public key pointed to by pubkey (cannot be NULL)
- It will be updated to reflect the new size.
- * Returns: 0 if the passed public key was invalid, 1 otherwise. If 1 is returned, the
- pubkey is replaced with its decompressed version.
- */
-SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_decompress(
- unsigned char *pubkey,
- int *pubkeylen
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
-
-/** Export a private key in DER format. */
-SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_export(
- const unsigned char *seckey,
- unsigned char *privkey,
- int *privkeylen,
- int compressed
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
-
-/** Import a private key in DER format. */
-SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_import(
- unsigned char *seckey,
- const unsigned char *privkey,
- int privkeylen
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
-
-/** Tweak a private key by adding tweak to it. */
-SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_add(
- unsigned char *seckey,
- const unsigned char *tweak
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
-
-/** Tweak a public key by adding tweak times the generator to it.
- * Requires starting with SECP256K1_START_VERIFY.
- */
-SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add(
- unsigned char *pubkey,
- int pubkeylen,
- const unsigned char *tweak
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3);
-
-/** Tweak a private key by multiplying it with tweak. */
-SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_mul(
- unsigned char *seckey,
- const unsigned char *tweak
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
-
-/** Tweak a public key by multiplying it with tweak.
- * Requires starting with SECP256K1_START_VERIFY.
- */
-SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul(
- unsigned char *pubkey,
- int pubkeylen,
- const unsigned char *tweak
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3);
-
-# ifdef __cplusplus
-}
-# endif
-
-#endif
diff --git a/crypto/secp256k1/secp256k1/src/ecdsa.h b/crypto/secp256k1/secp256k1/src/ecdsa.h
deleted file mode 100644
index c195e7afc..000000000
--- a/crypto/secp256k1/secp256k1/src/ecdsa.h
+++ /dev/null
@@ -1,23 +0,0 @@
-/**********************************************************************
- * Copyright (c) 2013, 2014 Pieter Wuille *
- * Distributed under the MIT software license, see the accompanying *
- * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
- **********************************************************************/
-
-#ifndef _SECP256K1_ECDSA_
-#define _SECP256K1_ECDSA_
-
-#include "scalar.h"
-#include "group.h"
-
-typedef struct {
- secp256k1_scalar_t r, s;
-} secp256k1_ecdsa_sig_t;
-
-static int secp256k1_ecdsa_sig_parse(secp256k1_ecdsa_sig_t *r, const unsigned char *sig, int size);
-static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, int *size, const secp256k1_ecdsa_sig_t *a);
-static int secp256k1_ecdsa_sig_verify(const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message);
-static int secp256k1_ecdsa_sig_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_scalar_t *seckey, const secp256k1_scalar_t *message, const secp256k1_scalar_t *nonce, int *recid);
-static int secp256k1_ecdsa_sig_recover(const secp256k1_ecdsa_sig_t *sig, secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message, int recid);
-
-#endif
diff --git a/crypto/secp256k1/secp256k1/src/eckey.h b/crypto/secp256k1/secp256k1/src/eckey.h
deleted file mode 100644
index 6de5dc0a5..000000000
--- a/crypto/secp256k1/secp256k1/src/eckey.h
+++ /dev/null
@@ -1,24 +0,0 @@
-/**********************************************************************
- * Copyright (c) 2013, 2014 Pieter Wuille *
- * Distributed under the MIT software license, see the accompanying *
- * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
- **********************************************************************/
-
-#ifndef _SECP256K1_ECKEY_
-#define _SECP256K1_ECKEY_
-
-#include "group.h"
-#include "scalar.h"
-
-static int secp256k1_eckey_pubkey_parse(secp256k1_ge_t *elem, const unsigned char *pub, int size);
-static int secp256k1_eckey_pubkey_serialize(secp256k1_ge_t *elem, unsigned char *pub, int *size, int compressed);
-
-static int secp256k1_eckey_privkey_parse(secp256k1_scalar_t *key, const unsigned char *privkey, int privkeylen);
-static int secp256k1_eckey_privkey_serialize(unsigned char *privkey, int *privkeylen, const secp256k1_scalar_t *key, int compressed);
-
-static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar_t *key, const secp256k1_scalar_t *tweak);
-static int secp256k1_eckey_pubkey_tweak_add(secp256k1_ge_t *key, const secp256k1_scalar_t *tweak);
-static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar_t *key, const secp256k1_scalar_t *tweak);
-static int secp256k1_eckey_pubkey_tweak_mul(secp256k1_ge_t *key, const secp256k1_scalar_t *tweak);
-
-#endif
diff --git a/crypto/secp256k1/secp256k1/src/ecmult.h b/crypto/secp256k1/secp256k1/src/ecmult.h
deleted file mode 100644
index 15a7100a4..000000000
--- a/crypto/secp256k1/secp256k1/src/ecmult.h
+++ /dev/null
@@ -1,19 +0,0 @@
-/**********************************************************************
- * Copyright (c) 2013, 2014 Pieter Wuille *
- * Distributed under the MIT software license, see the accompanying *
- * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
- **********************************************************************/
-
-#ifndef _SECP256K1_ECMULT_
-#define _SECP256K1_ECMULT_
-
-#include "num.h"
-#include "group.h"
-
-static void secp256k1_ecmult_start(void);
-static void secp256k1_ecmult_stop(void);
-
-/** Double multiply: R = na*A + ng*G */
-static void secp256k1_ecmult(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_scalar_t *na, const secp256k1_scalar_t *ng);
-
-#endif
diff --git a/crypto/secp256k1/secp256k1/src/ecmult_gen_impl.h b/crypto/secp256k1/secp256k1/src/ecmult_gen_impl.h
deleted file mode 100644
index 3146a93b5..000000000
--- a/crypto/secp256k1/secp256k1/src/ecmult_gen_impl.h
+++ /dev/null
@@ -1,128 +0,0 @@
-/**********************************************************************
- * Copyright (c) 2013, 2014 Pieter Wuille *
- * Distributed under the MIT software license, see the accompanying *
- * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
- **********************************************************************/
-
-#ifndef _SECP256K1_ECMULT_GEN_IMPL_H_
-#define _SECP256K1_ECMULT_GEN_IMPL_H_
-
-#include "scalar.h"
-#include "group.h"
-#include "ecmult_gen.h"
-
-typedef struct {
- /* For accelerating the computation of a*G:
- * To harden against timing attacks, use the following mechanism:
- * * Break up the multiplicand into groups of 4 bits, called n_0, n_1, n_2, ..., n_63.
- * * Compute sum(n_i * 16^i * G + U_i, i=0..63), where:
- * * U_i = U * 2^i (for i=0..62)
- * * U_i = U * (1-2^63) (for i=63)
- * where U is a point with no known corresponding scalar. Note that sum(U_i, i=0..63) = 0.
- * For each i, and each of the 16 possible values of n_i, (n_i * 16^i * G + U_i) is
- * precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0..63).
- * None of the resulting prec group elements have a known scalar, and neither do any of
- * the intermediate sums while computing a*G.
- */
- secp256k1_ge_storage_t prec[64][16]; /* prec[j][i] = 16^j * i * G + U_i */
-} secp256k1_ecmult_gen_consts_t;
-
-static const secp256k1_ecmult_gen_consts_t *secp256k1_ecmult_gen_consts = NULL;
-
-static void secp256k1_ecmult_gen_start(void) {
- secp256k1_ge_t prec[1024];
- secp256k1_gej_t gj;
- secp256k1_gej_t nums_gej;
- secp256k1_ecmult_gen_consts_t *ret;
- int i, j;
- if (secp256k1_ecmult_gen_consts != NULL) {
- return;
- }
-
- /* Allocate the precomputation table. */
- ret = (secp256k1_ecmult_gen_consts_t*)checked_malloc(sizeof(secp256k1_ecmult_gen_consts_t));
-
- /* get the generator */
- secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
-
- /* Construct a group element with no known corresponding scalar (nothing up my sleeve). */
- {
- static const unsigned char nums_b32[33] = "The scalar for this x is unknown";
- secp256k1_fe_t nums_x;
- secp256k1_ge_t nums_ge;
- VERIFY_CHECK(secp256k1_fe_set_b32(&nums_x, nums_b32));
- VERIFY_CHECK(secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0));
- secp256k1_gej_set_ge(&nums_gej, &nums_ge);
- /* Add G to make the bits in x uniformly distributed. */
- secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g);
- }
-
- /* compute prec. */
- {
- secp256k1_gej_t precj[1024]; /* Jacobian versions of prec. */
- secp256k1_gej_t gbase;
- secp256k1_gej_t numsbase;
- gbase = gj; /* 16^j * G */
- numsbase = nums_gej; /* 2^j * nums. */
- for (j = 0; j < 64; j++) {
- /* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */
- precj[j*16] = numsbase;
- for (i = 1; i < 16; i++) {
- secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase);
- }
- /* Multiply gbase by 16. */
- for (i = 0; i < 4; i++) {
- secp256k1_gej_double_var(&gbase, &gbase);
- }
- /* Multiply numbase by 2. */
- secp256k1_gej_double_var(&numsbase, &numsbase);
- if (j == 62) {
- /* In the last iteration, numsbase is (1 - 2^j) * nums instead. */
- secp256k1_gej_neg(&numsbase, &numsbase);
- secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej);
- }
- }
- secp256k1_ge_set_all_gej_var(1024, prec, precj);
- }
- for (j = 0; j < 64; j++) {
- for (i = 0; i < 16; i++) {
- secp256k1_ge_to_storage(&ret->prec[j][i], &prec[j*16 + i]);
- }
- }
-
- /* Set the global pointer to the precomputation table. */
- secp256k1_ecmult_gen_consts = ret;
-}
-
-static void secp256k1_ecmult_gen_stop(void) {
- secp256k1_ecmult_gen_consts_t *c;
- if (secp256k1_ecmult_gen_consts == NULL) {
- return;
- }
-
- c = (secp256k1_ecmult_gen_consts_t*)secp256k1_ecmult_gen_consts;
- secp256k1_ecmult_gen_consts = NULL;
- free(c);
-}
-
-static void secp256k1_ecmult_gen(secp256k1_gej_t *r, const secp256k1_scalar_t *gn) {
- const secp256k1_ecmult_gen_consts_t *c = secp256k1_ecmult_gen_consts;
- secp256k1_ge_t add;
- secp256k1_ge_storage_t adds;
- int bits;
- int i, j;
- secp256k1_gej_set_infinity(r);
- add.infinity = 0;
- for (j = 0; j < 64; j++) {
- bits = secp256k1_scalar_get_bits(gn, j * 4, 4);
- for (i = 0; i < 16; i++) {
- secp256k1_ge_storage_cmov(&adds, &c->prec[j][i], i == bits);
- }
- secp256k1_ge_from_storage(&add, &adds);
- secp256k1_gej_add_ge(r, r, &add);
- }
- bits = 0;
- secp256k1_ge_clear(&add);
-}
-
-#endif
diff --git a/crypto/secp256k1/secp256k1/src/ecmult_impl.h b/crypto/secp256k1/secp256k1/src/ecmult_impl.h
deleted file mode 100644
index f6f0c4294..000000000
--- a/crypto/secp256k1/secp256k1/src/ecmult_impl.h
+++ /dev/null
@@ -1,302 +0,0 @@
-/**********************************************************************
- * Copyright (c) 2013, 2014 Pieter Wuille *
- * Distributed under the MIT software license, see the accompanying *
- * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
- **********************************************************************/
-
-#ifndef _SECP256K1_ECMULT_IMPL_H_
-#define _SECP256K1_ECMULT_IMPL_H_
-
-#include "group.h"
-#include "scalar.h"
-#include "ecmult.h"
-
-/* optimal for 128-bit and 256-bit exponents. */
-#define WINDOW_A 5
-
-/** larger numbers may result in slightly better performance, at the cost of
- exponentially larger precomputed tables. */
-#ifdef USE_ENDOMORPHISM
-/** Two tables for window size 15: 1.375 MiB. */
-#define WINDOW_G 15
-#else
-/** One table for window size 16: 1.375 MiB. */
-#define WINDOW_G 16
-#endif
-
-/** Fill a table 'pre' with precomputed odd multiples of a. W determines the size of the table.
- * pre will contains the values [1*a,3*a,5*a,...,(2^(w-1)-1)*a], so it needs place for
- * 2^(w-2) entries.
- *
- * There are two versions of this function:
- * - secp256k1_ecmult_precomp_wnaf_gej, which operates on group elements in jacobian notation,
- * fast to precompute, but slower to use in later additions.
- * - secp256k1_ecmult_precomp_wnaf_ge, which operates on group elements in affine notations,
- * (much) slower to precompute, but a bit faster to use in later additions.
- * To compute a*P + b*G, we use the jacobian version for P, and the affine version for G, as
- * G is constant, so it only needs to be done once in advance.
- */
-static void secp256k1_ecmult_table_precomp_gej_var(secp256k1_gej_t *pre, const secp256k1_gej_t *a, int w) {
- secp256k1_gej_t d;
- int i;
- pre[0] = *a;
- secp256k1_gej_double_var(&d, &pre[0]);
- for (i = 1; i < (1 << (w-2)); i++) {
- secp256k1_gej_add_var(&pre[i], &d, &pre[i-1]);
- }
-}
-
-static void secp256k1_ecmult_table_precomp_ge_storage_var(secp256k1_ge_storage_t *pre, const secp256k1_gej_t *a, int w) {
- secp256k1_gej_t d;
- int i;
- const int table_size = 1 << (w-2);
- secp256k1_gej_t *prej = (secp256k1_gej_t *)checked_malloc(sizeof(secp256k1_gej_t) * table_size);
- secp256k1_ge_t *prea = (secp256k1_ge_t *)checked_malloc(sizeof(secp256k1_ge_t) * table_size);
- prej[0] = *a;
- secp256k1_gej_double_var(&d, a);
- for (i = 1; i < table_size; i++) {
- secp256k1_gej_add_var(&prej[i], &d, &prej[i-1]);
- }
- secp256k1_ge_set_all_gej_var(table_size, prea, prej);
- for (i = 0; i < table_size; i++) {
- secp256k1_ge_to_storage(&pre[i], &prea[i]);
- }
- free(prej);
- free(prea);
-}
-
-/** The number of entries a table with precomputed multiples needs to have. */
-#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2))
-
-/** The following two macro retrieves a particular odd multiple from a table
- * of precomputed multiples. */
-#define ECMULT_TABLE_GET_GEJ(r,pre,n,w) do { \
- VERIFY_CHECK(((n) & 1) == 1); \
- VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
- VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
- if ((n) > 0) { \
- *(r) = (pre)[((n)-1)/2]; \
- } else { \
- secp256k1_gej_neg((r), &(pre)[(-(n)-1)/2]); \
- } \
-} while(0)
-#define ECMULT_TABLE_GET_GE_STORAGE(r,pre,n,w) do { \
- VERIFY_CHECK(((n) & 1) == 1); \
- VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
- VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
- if ((n) > 0) { \
- secp256k1_ge_from_storage((r), &(pre)[((n)-1)/2]); \
- } else { \
- secp256k1_ge_from_storage((r), &(pre)[(-(n)-1)/2]); \
- secp256k1_ge_neg((r), (r)); \
- } \
-} while(0)
-
-typedef struct {
- /* For accelerating the computation of a*P + b*G: */
- secp256k1_ge_storage_t pre_g[ECMULT_TABLE_SIZE(WINDOW_G)]; /* odd multiples of the generator */
-#ifdef USE_ENDOMORPHISM
- secp256k1_ge_storage_t pre_g_128[ECMULT_TABLE_SIZE(WINDOW_G)]; /* odd multiples of 2^128*generator */
-#endif
-} secp256k1_ecmult_consts_t;
-
-static const secp256k1_ecmult_consts_t *secp256k1_ecmult_consts = NULL;
-
-static void secp256k1_ecmult_start(void) {
- secp256k1_gej_t gj;
- secp256k1_ecmult_consts_t *ret;
- if (secp256k1_ecmult_consts != NULL) {
- return;
- }
-
- /* Allocate the precomputation table. */
- ret = (secp256k1_ecmult_consts_t*)checked_malloc(sizeof(secp256k1_ecmult_consts_t));
-
- /* get the generator */
- secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
-
-
- /* precompute the tables with odd multiples */
- secp256k1_ecmult_table_precomp_ge_storage_var(ret->pre_g, &gj, WINDOW_G);
-
-#ifdef USE_ENDOMORPHISM
- {
- secp256k1_gej_t g_128j;
- int i;
- /* calculate 2^128*generator */
- g_128j = gj;
- for (i = 0; i < 128; i++) {
- secp256k1_gej_double_var(&g_128j, &g_128j);
- }
- secp256k1_ecmult_table_precomp_ge_storage_var(ret->pre_g_128, &g_128j, WINDOW_G);
- }
-#endif
-
- /* Set the global pointer to the precomputation table. */
- secp256k1_ecmult_consts = ret;
-}
-
-static void secp256k1_ecmult_stop(void) {
- secp256k1_ecmult_consts_t *c;
- if (secp256k1_ecmult_consts == NULL) {
- return;
- }
-
- c = (secp256k1_ecmult_consts_t*)secp256k1_ecmult_consts;
- secp256k1_ecmult_consts = NULL;
- free(c);
-}
-
-/** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits),
- * with the following guarantees:
- * - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1)
- * - two non-zero entries in wnaf are separated by at least w-1 zeroes.
- * - the number of set values in wnaf is returned. This number is at most 256, and at most one more
- * - than the number of bits in the (absolute value) of the input.
- */
-static int secp256k1_ecmult_wnaf(int *wnaf, const secp256k1_scalar_t *a, int w) {
- secp256k1_scalar_t s = *a;
- int set_bits = 0;
- int bit = 0;
- int sign = 1;
-
- if (secp256k1_scalar_get_bits(&s, 255, 1)) {
- secp256k1_scalar_negate(&s, &s);
- sign = -1;
- }
-
- while (bit < 256) {
- int now;
- int word;
- if (secp256k1_scalar_get_bits(&s, bit, 1) == 0) {
- bit++;
- continue;
- }
- while (set_bits < bit) {
- wnaf[set_bits++] = 0;
- }
- now = w;
- if (bit + now > 256) {
- now = 256 - bit;
- }
- word = secp256k1_scalar_get_bits_var(&s, bit, now);
- if (word & (1 << (w-1))) {
- secp256k1_scalar_add_bit(&s, bit + w);
- wnaf[set_bits++] = sign * (word - (1 << w));
- } else {
- wnaf[set_bits++] = sign * word;
- }
- bit += now;
- }
- return set_bits;
-}
-
-static void secp256k1_ecmult(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_scalar_t *na, const secp256k1_scalar_t *ng) {
- secp256k1_gej_t tmpj;
- secp256k1_gej_t pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
- secp256k1_ge_t tmpa;
- const secp256k1_ecmult_consts_t *c = secp256k1_ecmult_consts;
-#ifdef USE_ENDOMORPHISM
- secp256k1_gej_t pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
- secp256k1_scalar_t na_1, na_lam;
- /* Splitted G factors. */
- secp256k1_scalar_t ng_1, ng_128;
- int wnaf_na_1[130];
- int wnaf_na_lam[130];
- int bits_na_1;
- int bits_na_lam;
- int wnaf_ng_1[129];
- int bits_ng_1;
- int wnaf_ng_128[129];
- int bits_ng_128;
-#else
- int wnaf_na[256];
- int bits_na;
- int wnaf_ng[257];
- int bits_ng;
-#endif
- int i;
- int bits;
-
-#ifdef USE_ENDOMORPHISM
- /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
- secp256k1_scalar_split_lambda_var(&na_1, &na_lam, na);
-
- /* build wnaf representation for na_1 and na_lam. */
- bits_na_1 = secp256k1_ecmult_wnaf(wnaf_na_1, &na_1, WINDOW_A);
- bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, &na_lam, WINDOW_A);
- VERIFY_CHECK(bits_na_1 <= 130);
- VERIFY_CHECK(bits_na_lam <= 130);
- bits = bits_na_1;
- if (bits_na_lam > bits) {
- bits = bits_na_lam;
- }
-#else
- /* build wnaf representation for na. */
- bits_na = secp256k1_ecmult_wnaf(wnaf_na, na, WINDOW_A);
- bits = bits_na;
-#endif
-
- /* calculate odd multiples of a */
- secp256k1_ecmult_table_precomp_gej_var(pre_a, a, WINDOW_A);
-
-#ifdef USE_ENDOMORPHISM
- for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
- secp256k1_gej_mul_lambda(&pre_a_lam[i], &pre_a[i]);
- }
-
- /* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */
- secp256k1_scalar_split_128(&ng_1, &ng_128, ng);
-
- /* Build wnaf representation for ng_1 and ng_128 */
- bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, &ng_1, WINDOW_G);
- bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, &ng_128, WINDOW_G);
- if (bits_ng_1 > bits) {
- bits = bits_ng_1;
- }
- if (bits_ng_128 > bits) {
- bits = bits_ng_128;
- }
-#else
- bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, ng, WINDOW_G);
- if (bits_ng > bits) {
- bits = bits_ng;
- }
-#endif
-
- secp256k1_gej_set_infinity(r);
-
- for (i = bits-1; i >= 0; i--) {
- int n;
- secp256k1_gej_double_var(r, r);
-#ifdef USE_ENDOMORPHISM
- if (i < bits_na_1 && (n = wnaf_na_1[i])) {
- ECMULT_TABLE_GET_GEJ(&tmpj, pre_a, n, WINDOW_A);
- secp256k1_gej_add_var(r, r, &tmpj);
- }
- if (i < bits_na_lam && (n = wnaf_na_lam[i])) {
- ECMULT_TABLE_GET_GEJ(&tmpj, pre_a_lam, n, WINDOW_A);
- secp256k1_gej_add_var(r, r, &tmpj);
- }
- if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
- ECMULT_TABLE_GET_GE_STORAGE(&tmpa, c->pre_g, n, WINDOW_G);
- secp256k1_gej_add_ge_var(r, r, &tmpa);
- }
- if (i < bits_ng_128 && (n = wnaf_ng_128[i])) {
- ECMULT_TABLE_GET_GE_STORAGE(&tmpa, c->pre_g_128, n, WINDOW_G);
- secp256k1_gej_add_ge_var(r, r, &tmpa);
- }
-#else
- if (i < bits_na && (n = wnaf_na[i])) {
- ECMULT_TABLE_GET_GEJ(&tmpj, pre_a, n, WINDOW_A);
- secp256k1_gej_add_var(r, r, &tmpj);
- }
- if (i < bits_ng && (n = wnaf_ng[i])) {
- ECMULT_TABLE_GET_GE_STORAGE(&tmpa, c->pre_g, n, WINDOW_G);
- secp256k1_gej_add_ge_var(r, r, &tmpa);
- }
-#endif
- }
-}
-
-#endif
diff --git a/crypto/secp256k1/secp256k1/src/group.h b/crypto/secp256k1/secp256k1/src/group.h
deleted file mode 100644
index d1e583490..000000000
--- a/crypto/secp256k1/secp256k1/src/group.h
+++ /dev/null
@@ -1,118 +0,0 @@
-/**********************************************************************
- * Copyright (c) 2013, 2014 Pieter Wuille *
- * Distributed under the MIT software license, see the accompanying *
- * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
- **********************************************************************/
-
-#ifndef _SECP256K1_GROUP_
-#define _SECP256K1_GROUP_
-
-#include "num.h"
-#include "field.h"
-
-/** A group element of the secp256k1 curve, in affine coordinates. */
-typedef struct {
- secp256k1_fe_t x;
- secp256k1_fe_t y;
- int infinity; /* whether this represents the point at infinity */
-} secp256k1_ge_t;
-
-#define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0}
-#define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
-
-/** A group element of the secp256k1 curve, in jacobian coordinates. */
-typedef struct {
- secp256k1_fe_t x; /* actual X: x/z^2 */
- secp256k1_fe_t y; /* actual Y: y/z^3 */
- secp256k1_fe_t z;
- int infinity; /* whether this represents the point at infinity */
-} secp256k1_gej_t;
-
-#define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0}
-#define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
-
-typedef struct {
- secp256k1_fe_storage_t x;
- secp256k1_fe_storage_t y;
-} secp256k1_ge_storage_t;
-
-#define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))}
-
-/** Set a group element equal to the point at infinity */
-static void secp256k1_ge_set_infinity(secp256k1_ge_t *r);
-
-/** Set a group element equal to the point with given X and Y coordinates */
-static void secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y);
-
-/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
- * for Y. Return value indicates whether the result is valid. */
-static int secp256k1_ge_set_xo_var(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd);
-
-/** Check whether a group element is the point at infinity. */
-static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a);
-
-/** Check whether a group element is valid (i.e., on the curve). */
-static int secp256k1_ge_is_valid_var(const secp256k1_ge_t *a);
-
-static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a);
-
-/** Set a group element equal to another which is given in jacobian coordinates */
-static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a);
-
-/** Set a batch of group elements equal to the inputs given in jacobian coordinates */
-static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t *r, const secp256k1_gej_t *a);
-
-
-/** Set a group element (jacobian) equal to the point at infinity. */
-static void secp256k1_gej_set_infinity(secp256k1_gej_t *r);
-
-/** Set a group element (jacobian) equal to the point with given X and Y coordinates. */
-static void secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y);
-
-/** Set a group element (jacobian) equal to another which is given in affine coordinates. */
-static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a);
-
-/** Compare the X coordinate of a group element (jacobian). */
-static int secp256k1_gej_eq_x_var(const secp256k1_fe_t *x, const secp256k1_gej_t *a);
-
-/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
-static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a);
-
-/** Check whether a group element is the point at infinity. */
-static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a);
-
-/** Set r equal to the double of a. */
-static void secp256k1_gej_double_var(secp256k1_gej_t *r, const secp256k1_gej_t *a);
-
-/** Set r equal to the sum of a and b. */
-static void secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b);
-
-/** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */
-static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b);
-
-/** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient
- than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time
- guarantee, and b is allowed to be infinity. */
-static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b);
-
-#ifdef USE_ENDOMORPHISM
-/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
-static void secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a);
-#endif
-
-/** Clear a secp256k1_gej_t to prevent leaking sensitive information. */
-static void secp256k1_gej_clear(secp256k1_gej_t *r);
-
-/** Clear a secp256k1_ge_t to prevent leaking sensitive information. */
-static void secp256k1_ge_clear(secp256k1_ge_t *r);
-
-/** Convert a group element to the storage type. */
-static void secp256k1_ge_to_storage(secp256k1_ge_storage_t *r, const secp256k1_ge_t*);
-
-/** Convert a group element back from the storage type. */
-static void secp256k1_ge_from_storage(secp256k1_ge_t *r, const secp256k1_ge_storage_t*);
-
-/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
-static void secp256k1_ge_storage_cmov(secp256k1_ge_storage_t *r, const secp256k1_ge_storage_t *a, int flag);
-
-#endif
diff --git a/crypto/secp256k1/secp256k1/src/group_impl.h b/crypto/secp256k1/secp256k1/src/group_impl.h
deleted file mode 100644
index 0d1c7b02f..000000000
--- a/crypto/secp256k1/secp256k1/src/group_impl.h
+++ /dev/null
@@ -1,434 +0,0 @@
-/**********************************************************************
- * Copyright (c) 2013, 2014 Pieter Wuille *
- * Distributed under the MIT software license, see the accompanying *
- * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
- **********************************************************************/
-
-#ifndef _SECP256K1_GROUP_IMPL_H_
-#define _SECP256K1_GROUP_IMPL_H_
-
-#include <string.h>
-
-#include "num.h"
-#include "field.h"
-#include "group.h"
-
-/** Generator for secp256k1, value 'g' defined in
- * "Standards for Efficient Cryptography" (SEC2) 2.7.1.
- */
-static const secp256k1_ge_t secp256k1_ge_const_g = SECP256K1_GE_CONST(
- 0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL,
- 0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL,
- 0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL,
- 0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
-);
-
-static void secp256k1_ge_set_infinity(secp256k1_ge_t *r) {
- r->infinity = 1;
-}
-
-static void secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) {
- r->infinity = 0;
- r->x = *x;
- r->y = *y;
-}
-
-static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a) {
- return a->infinity;
-}
-
-static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a) {
- *r = *a;
- secp256k1_fe_normalize_weak(&r->y);
- secp256k1_fe_negate(&r->y, &r->y, 1);
-}
-
-static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a) {
- secp256k1_fe_t z2, z3;
- r->infinity = a->infinity;
- secp256k1_fe_inv(&a->z, &a->z);
- secp256k1_fe_sqr(&z2, &a->z);
- secp256k1_fe_mul(&z3, &a->z, &z2);
- secp256k1_fe_mul(&a->x, &a->x, &z2);
- secp256k1_fe_mul(&a->y, &a->y, &z3);
- secp256k1_fe_set_int(&a->z, 1);
- r->x = a->x;
- r->y = a->y;
-}
-
-static void secp256k1_ge_set_gej_var(secp256k1_ge_t *r, secp256k1_gej_t *a) {
- secp256k1_fe_t z2, z3;
- r->infinity = a->infinity;
- if (a->infinity) {
- return;
- }
- secp256k1_fe_inv_var(&a->z, &a->z);
- secp256k1_fe_sqr(&z2, &a->z);
- secp256k1_fe_mul(&z3, &a->z, &z2);
- secp256k1_fe_mul(&a->x, &a->x, &z2);
- secp256k1_fe_mul(&a->y, &a->y, &z3);
- secp256k1_fe_set_int(&a->z, 1);
- r->x = a->x;
- r->y = a->y;
-}
-
-static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t *r, const secp256k1_gej_t *a) {
- secp256k1_fe_t *az;
- secp256k1_fe_t *azi;
- size_t i;
- size_t count = 0;
- az = (secp256k1_fe_t *)checked_malloc(sizeof(secp256k1_fe_t) * len);
- for (i = 0; i < len; i++) {
- if (!a[i].infinity) {
- az[count++] = a[i].z;
- }
- }
-
- azi = (secp256k1_fe_t *)checked_malloc(sizeof(secp256k1_fe_t) * count);
- secp256k1_fe_inv_all_var(count, azi, az);
- free(az);
-
- count = 0;
- for (i = 0; i < len; i++) {
- r[i].infinity = a[i].infinity;
- if (!a[i].infinity) {
- secp256k1_fe_t zi2, zi3;
- secp256k1_fe_t *zi = &azi[count++];
- secp256k1_fe_sqr(&zi2, zi);
- secp256k1_fe_mul(&zi3, &zi2, zi);
- secp256k1_fe_mul(&r[i].x, &a[i].x, &zi2);
- secp256k1_fe_mul(&r[i].y, &a[i].y, &zi3);
- }
- }
- free(azi);
-}
-
-static void secp256k1_gej_set_infinity(secp256k1_gej_t *r) {
- r->infinity = 1;
- secp256k1_fe_set_int(&r->x, 0);
- secp256k1_fe_set_int(&r->y, 0);
- secp256k1_fe_set_int(&r->z, 0);
-}
-
-static void secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) {
- r->infinity = 0;
- r->x = *x;
- r->y = *y;
- secp256k1_fe_set_int(&r->z, 1);
-}
-
-static void secp256k1_gej_clear(secp256k1_gej_t *r) {
- r->infinity = 0;
- secp256k1_fe_clear(&r->x);
- secp256k1_fe_clear(&r->y);
- secp256k1_fe_clear(&r->z);
-}
-
-static void secp256k1_ge_clear(secp256k1_ge_t *r) {
- r->infinity = 0;
- secp256k1_fe_clear(&r->x);
- secp256k1_fe_clear(&r->y);
-}
-
-static int secp256k1_ge_set_xo_var(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd) {
- secp256k1_fe_t x2, x3, c;
- r->x = *x;
- secp256k1_fe_sqr(&x2, x);
- secp256k1_fe_mul(&x3, x, &x2);
- r->infinity = 0;
- secp256k1_fe_set_int(&c, 7);
- secp256k1_fe_add(&c, &x3);
- if (!secp256k1_fe_sqrt_var(&r->y, &c)) {
- return 0;
- }
- secp256k1_fe_normalize_var(&r->y);
- if (secp256k1_fe_is_odd(&r->y) != odd) {
- secp256k1_fe_negate(&r->y, &r->y, 1);
- }
- return 1;
-}
-
-static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a) {
- r->infinity = a->infinity;
- r->x = a->x;
- r->y = a->y;
- secp256k1_fe_set_int(&r->z, 1);
-}
-
-static int secp256k1_gej_eq_x_var(const secp256k1_fe_t *x, const secp256k1_gej_t *a) {
- secp256k1_fe_t r, r2;
- VERIFY_CHECK(!a->infinity);
- secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
- r2 = a->x; secp256k1_fe_normalize_weak(&r2);
- return secp256k1_fe_equal_var(&r, &r2);
-}
-
-static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a) {
- r->infinity = a->infinity;
- r->x = a->x;
- r->y = a->y;
- r->z = a->z;
- secp256k1_fe_normalize_weak(&r->y);
- secp256k1_fe_negate(&r->y, &r->y, 1);
-}
-
-static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a) {
- return a->infinity;
-}
-
-static int secp256k1_gej_is_valid_var(const secp256k1_gej_t *a) {
- secp256k1_fe_t y2, x3, z2, z6;
- if (a->infinity) {
- return 0;
- }
- /** y^2 = x^3 + 7
- * (Y/Z^3)^2 = (X/Z^2)^3 + 7
- * Y^2 / Z^6 = X^3 / Z^6 + 7
- * Y^2 = X^3 + 7*Z^6
- */
- secp256k1_fe_sqr(&y2, &a->y);
- secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
- secp256k1_fe_sqr(&z2, &a->z);
- secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2);
- secp256k1_fe_mul_int(&z6, 7);
- secp256k1_fe_add(&x3, &z6);
- secp256k1_fe_normalize_weak(&x3);
- return secp256k1_fe_equal_var(&y2, &x3);
-}
-
-static int secp256k1_ge_is_valid_var(const secp256k1_ge_t *a) {
- secp256k1_fe_t y2, x3, c;
- if (a->infinity) {
- return 0;
- }
- /* y^2 = x^3 + 7 */
- secp256k1_fe_sqr(&y2, &a->y);
- secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
- secp256k1_fe_set_int(&c, 7);
- secp256k1_fe_add(&x3, &c);
- secp256k1_fe_normalize_weak(&x3);
- return secp256k1_fe_equal_var(&y2, &x3);
-}
-
-static void secp256k1_gej_double_var(secp256k1_gej_t *r, const secp256k1_gej_t *a) {
- /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate */
- secp256k1_fe_t t1,t2,t3,t4;
- /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
- * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
- * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
- */
- r->infinity = a->infinity;
- if (r->infinity) {
- return;
- }
-
- secp256k1_fe_mul(&r->z, &a->z, &a->y);
- secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */
- secp256k1_fe_sqr(&t1, &a->x);
- secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */
- secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */
- secp256k1_fe_sqr(&t3, &a->y);
- secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */
- secp256k1_fe_sqr(&t4, &t3);
- secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */
- secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */
- r->x = t3;
- secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */
- secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */
- secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */
- secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */
- secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */
- secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */
- secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */
- secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */
- secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */
-}
-
-static void secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b) {
- /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */
- secp256k1_fe_t z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
- if (a->infinity) {
- *r = *b;
- return;
- }
- if (b->infinity) {
- *r = *a;
- return;
- }
- r->infinity = 0;
- secp256k1_fe_sqr(&z22, &b->z);
- secp256k1_fe_sqr(&z12, &a->z);
- secp256k1_fe_mul(&u1, &a->x, &z22);
- secp256k1_fe_mul(&u2, &b->x, &z12);
- secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z);
- secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
- secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
- secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
- if (secp256k1_fe_normalizes_to_zero_var(&h)) {
- if (secp256k1_fe_normalizes_to_zero_var(&i)) {
- secp256k1_gej_double_var(r, a);
- } else {
- r->infinity = 1;
- }
- return;
- }
- secp256k1_fe_sqr(&i2, &i);
- secp256k1_fe_sqr(&h2, &h);
- secp256k1_fe_mul(&h3, &h, &h2);
- secp256k1_fe_mul(&r->z, &a->z, &b->z); secp256k1_fe_mul(&r->z, &r->z, &h);
- secp256k1_fe_mul(&t, &u1, &h2);
- r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
- secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
- secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
- secp256k1_fe_add(&r->y, &h3);
-}
-
-static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) {
- /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
- secp256k1_fe_t z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
- if (a->infinity) {
- r->infinity = b->infinity;
- r->x = b->x;
- r->y = b->y;
- secp256k1_fe_set_int(&r->z, 1);
- return;
- }
- if (b->infinity) {
- *r = *a;
- return;
- }
- r->infinity = 0;
- secp256k1_fe_sqr(&z12, &a->z);
- u1 = a->x; secp256k1_fe_normalize_weak(&u1);
- secp256k1_fe_mul(&u2, &b->x, &z12);
- s1 = a->y; secp256k1_fe_normalize_weak(&s1);
- secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
- secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
- secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
- if (secp256k1_fe_normalizes_to_zero_var(&h)) {
- if (secp256k1_fe_normalizes_to_zero_var(&i)) {
- secp256k1_gej_double_var(r, a);
- } else {
- r->infinity = 1;
- }
- return;
- }
- secp256k1_fe_sqr(&i2, &i);
- secp256k1_fe_sqr(&h2, &h);
- secp256k1_fe_mul(&h3, &h, &h2);
- r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h);
- secp256k1_fe_mul(&t, &u1, &h2);
- r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
- secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
- secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
- secp256k1_fe_add(&r->y, &h3);
-}
-
-static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) {
- /* Operations: 7 mul, 5 sqr, 5 normalize, 19 mul_int/add/negate */
- secp256k1_fe_t zz, u1, u2, s1, s2, z, t, m, n, q, rr;
- int infinity;
- VERIFY_CHECK(!b->infinity);
- VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
-
- /** In:
- * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks.
- * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002.
- * we find as solution for a unified addition/doubling formula:
- * lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation.
- * x3 = lambda^2 - (x1 + x2)
- * 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2).
- *
- * Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives:
- * U1 = X1*Z2^2, U2 = X2*Z1^2
- * S1 = Y1*Z2^3, S2 = Y2*Z1^3
- * Z = Z1*Z2
- * T = U1+U2
- * M = S1+S2
- * Q = T*M^2
- * R = T^2-U1*U2
- * X3 = 4*(R^2-Q)
- * Y3 = 4*(R*(3*Q-2*R^2)-M^4)
- * Z3 = 2*M*Z
- * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.)
- */
-
- secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */
- u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */
- secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */
- s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */
- secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z2^2 (1) */
- secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */
- z = a->z; /* z = Z = Z1*Z2 (8) */
- t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */
- m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */
- secp256k1_fe_sqr(&n, &m); /* n = M^2 (1) */
- secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*M^2 (1) */
- secp256k1_fe_sqr(&n, &n); /* n = M^4 (1) */
- secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
- secp256k1_fe_mul(&t, &u1, &u2); secp256k1_fe_negate(&t, &t, 1); /* t = -U1*U2 (2) */
- secp256k1_fe_add(&rr, &t); /* rr = R = T^2-U1*U2 (3) */
- secp256k1_fe_sqr(&t, &rr); /* t = R^2 (1) */
- secp256k1_fe_mul(&r->z, &m, &z); /* r->z = M*Z (1) */
- infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity);
- secp256k1_fe_mul_int(&r->z, 2 * (1 - a->infinity)); /* r->z = Z3 = 2*M*Z (2) */
- r->x = t; /* r->x = R^2 (1) */
- secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */
- secp256k1_fe_add(&r->x, &q); /* r->x = R^2-Q (3) */
- secp256k1_fe_normalize(&r->x);
- secp256k1_fe_mul_int(&q, 3); /* q = -3*Q (6) */
- secp256k1_fe_mul_int(&t, 2); /* t = 2*R^2 (2) */
- secp256k1_fe_add(&t, &q); /* t = 2*R^2-3*Q (8) */
- secp256k1_fe_mul(&t, &t, &rr); /* t = R*(2*R^2-3*Q) (1) */
- secp256k1_fe_add(&t, &n); /* t = R*(2*R^2-3*Q)+M^4 (2) */
- secp256k1_fe_negate(&r->y, &t, 2); /* r->y = R*(3*Q-2*R^2)-M^4 (3) */
- secp256k1_fe_normalize_weak(&r->y);
- secp256k1_fe_mul_int(&r->x, 4 * (1 - a->infinity)); /* r->x = X3 = 4*(R^2-Q) */
- secp256k1_fe_mul_int(&r->y, 4 * (1 - a->infinity)); /* r->y = Y3 = 4*R*(3*Q-2*R^2)-4*M^4 (4) */
-
- /** In case a->infinity == 1, the above code results in r->x, r->y, and r->z all equal to 0.
- * Add b->x to x, b->y to y, and 1 to z in that case.
- */
- t = b->x; secp256k1_fe_mul_int(&t, a->infinity);
- secp256k1_fe_add(&r->x, &t);
- t = b->y; secp256k1_fe_mul_int(&t, a->infinity);
- secp256k1_fe_add(&r->y, &t);
- secp256k1_fe_set_int(&t, a->infinity);
- secp256k1_fe_add(&r->z, &t);
- r->infinity = infinity;
-}
-
-static void secp256k1_ge_to_storage(secp256k1_ge_storage_t *r, const secp256k1_ge_t *a) {
- secp256k1_fe_t x, y;
- VERIFY_CHECK(!a->infinity);
- x = a->x;
- secp256k1_fe_normalize(&x);
- y = a->y;
- secp256k1_fe_normalize(&y);
- secp256k1_fe_to_storage(&r->x, &x);
- secp256k1_fe_to_storage(&r->y, &y);
-}
-
-static void secp256k1_ge_from_storage(secp256k1_ge_t *r, const secp256k1_ge_storage_t *a) {
- secp256k1_fe_from_storage(&r->x, &a->x);
- secp256k1_fe_from_storage(&r->y, &a->y);
- r->infinity = 0;
-}
-
-static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage_t *r, const secp256k1_ge_storage_t *a, int flag) {
- secp256k1_fe_storage_cmov(&r->x, &a->x, flag);
- secp256k1_fe_storage_cmov(&r->y, &a->y, flag);
-}
-
-#ifdef USE_ENDOMORPHISM
-static void secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a) {
- static const secp256k1_fe_t beta = SECP256K1_FE_CONST(
- 0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
- 0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
- );
- *r = *a;
- secp256k1_fe_mul(&r->x, &r->x, &beta);
-}
-#endif
-
-#endif
diff --git a/crypto/secp256k1/secp256k1/src/scalar.h b/crypto/secp256k1/secp256k1/src/scalar.h
deleted file mode 100644
index f5d09f8d4..000000000
--- a/crypto/secp256k1/secp256k1/src/scalar.h
+++ /dev/null
@@ -1,93 +0,0 @@
-/**********************************************************************
- * Copyright (c) 2014 Pieter Wuille *
- * Distributed under the MIT software license, see the accompanying *
- * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
- **********************************************************************/
-
-#ifndef _SECP256K1_SCALAR_
-#define _SECP256K1_SCALAR_
-
-#include "num.h"
-
-#if defined HAVE_CONFIG_H
-#include "libsecp256k1-config.h"
-#endif
-
-#if defined(USE_SCALAR_4X64)
-#include "scalar_4x64.h"
-#elif defined(USE_SCALAR_8X32)
-#include "scalar_8x32.h"
-#else
-#error "Please select scalar implementation"
-#endif
-
-/** Clear a scalar to prevent the leak of sensitive data. */
-static void secp256k1_scalar_clear(secp256k1_scalar_t *r);
-
-/** Access bits from a scalar. All requested bits must belong to the same 32-bit limb. */
-static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar_t *a, unsigned int offset, unsigned int count);
-
-/** Access bits from a scalar. Not constant time. */
-static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar_t *a, unsigned int offset, unsigned int count);
-
-/** Set a scalar from a big endian byte array. */
-static void secp256k1_scalar_set_b32(secp256k1_scalar_t *r, const unsigned char *bin, int *overflow);
-
-/** Set a scalar to an unsigned integer. */
-static void secp256k1_scalar_set_int(secp256k1_scalar_t *r, unsigned int v);
-
-/** Convert a scalar to a byte array. */
-static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar_t* a);
-
-/** Add two scalars together (modulo the group order). Returns whether it overflowed. */
-static int secp256k1_scalar_add(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b);
-
-/** Add a power of two to a scalar. The result is not allowed to overflow. */
-static void secp256k1_scalar_add_bit(secp256k1_scalar_t *r, unsigned int bit);
-
-/** Multiply two scalars (modulo the group order). */
-static void secp256k1_scalar_mul(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b);
-
-/** Compute the square of a scalar (modulo the group order). */
-static void secp256k1_scalar_sqr(secp256k1_scalar_t *r, const secp256k1_scalar_t *a);
-
-/** Compute the inverse of a scalar (modulo the group order). */
-static void secp256k1_scalar_inverse(secp256k1_scalar_t *r, const secp256k1_scalar_t *a);
-
-/** Compute the inverse of a scalar (modulo the group order), without constant-time guarantee. */
-static void secp256k1_scalar_inverse_var(secp256k1_scalar_t *r, const secp256k1_scalar_t *a);
-
-/** Compute the complement of a scalar (modulo the group order). */
-static void secp256k1_scalar_negate(secp256k1_scalar_t *r, const secp256k1_scalar_t *a);
-
-/** Check whether a scalar equals zero. */
-static int secp256k1_scalar_is_zero(const secp256k1_scalar_t *a);
-
-/** Check whether a scalar equals one. */
-static int secp256k1_scalar_is_one(const secp256k1_scalar_t *a);
-
-/** Check whether a scalar is higher than the group order divided by 2. */
-static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a);
-
-#ifndef USE_NUM_NONE
-/** Convert a scalar to a number. */
-static void secp256k1_scalar_get_num(secp256k1_num_t *r, const secp256k1_scalar_t *a);
-
-/** Get the order of the group as a number. */
-static void secp256k1_scalar_order_get_num(secp256k1_num_t *r);
-#endif
-
-/** Compare two scalars. */
-static int secp256k1_scalar_eq(const secp256k1_scalar_t *a, const secp256k1_scalar_t *b);
-
-#ifdef USE_ENDOMORPHISM
-/** Find r1 and r2 such that r1+r2*2^128 = a. */
-static void secp256k1_scalar_split_128(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a);
-/** Find r1 and r2 such that r1+r2*lambda = a, and r1 and r2 are maximum 128 bits long (see secp256k1_gej_mul_lambda). */
-static void secp256k1_scalar_split_lambda_var(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a);
-#endif
-
-/** Multiply a and b (without taking the modulus!), divide by 2**shift, and round to the nearest integer. Shift must be at least 256. */
-static void secp256k1_scalar_mul_shift_var(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b, unsigned int shift);
-
-#endif
diff --git a/crypto/secp256k1/secp256k1/src/secp256k1.c b/crypto/secp256k1/secp256k1/src/secp256k1.c
deleted file mode 100644
index c1320172f..000000000
--- a/crypto/secp256k1/secp256k1/src/secp256k1.c
+++ /dev/null
@@ -1,372 +0,0 @@
-/**********************************************************************
- * Copyright (c) 2013, 2014 Pieter Wuille *
- * Distributed under the MIT software license, see the accompanying *
- * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
- **********************************************************************/
-
-#define SECP256K1_BUILD (1)
-
-#include "include/secp256k1.h"
-
-#include "util.h"
-#include "num_impl.h"
-#include "field_impl.h"
-#include "scalar_impl.h"
-#include "group_impl.h"
-#include "ecmult_impl.h"
-#include "ecmult_gen_impl.h"
-#include "ecdsa_impl.h"
-#include "eckey_impl.h"
-#include "hash_impl.h"
-
-void secp256k1_start(unsigned int flags) {
- if (flags & SECP256K1_START_SIGN) {
- secp256k1_ecmult_gen_start();
- }
- if (flags & SECP256K1_START_VERIFY) {
- secp256k1_ecmult_start();
- }
-}
-
-void secp256k1_stop(void) {
- secp256k1_ecmult_stop();
- secp256k1_ecmult_gen_stop();
-}
-
-int secp256k1_ecdsa_verify(const unsigned char *msg32, const unsigned char *sig, int siglen, const unsigned char *pubkey, int pubkeylen) {
- secp256k1_ge_t q;
- secp256k1_ecdsa_sig_t s;
- secp256k1_scalar_t m;
- int ret = -3;
- DEBUG_CHECK(secp256k1_ecmult_consts != NULL);
- DEBUG_CHECK(msg32 != NULL);
- DEBUG_CHECK(sig != NULL);
- DEBUG_CHECK(pubkey != NULL);
-
- secp256k1_scalar_set_b32(&m, msg32, NULL);
-
- if (secp256k1_eckey_pubkey_parse(&q, pubkey, pubkeylen)) {
- if (secp256k1_ecdsa_sig_parse(&s, sig, siglen)) {
- if (secp256k1_ecdsa_sig_verify(&s, &q, &m)) {
- /* success is 1, all other values are fail */
- ret = 1;
- } else {
- ret = 0;
- }
- } else {
- ret = -2;
- }
- } else {
- ret = -1;
- }
-
- return ret;
-}
-
-static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, unsigned int counter, const void *data) {
- secp256k1_rfc6979_hmac_sha256_t rng;
- unsigned int i;
- secp256k1_rfc6979_hmac_sha256_initialize(&rng, key32, 32, msg32, 32, (const unsigned char*)data, data != NULL ? 32 : 0);
- for (i = 0; i <= counter; i++) {
- secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
- }
- secp256k1_rfc6979_hmac_sha256_finalize(&rng);
- return 1;
-}
-
-const secp256k1_nonce_function_t secp256k1_nonce_function_rfc6979 = nonce_function_rfc6979;
-const secp256k1_nonce_function_t secp256k1_nonce_function_default = nonce_function_rfc6979;
-
-int secp256k1_ecdsa_sign(const unsigned char *msg32, unsigned char *signature, int *signaturelen, const unsigned char *seckey, secp256k1_nonce_function_t noncefp, const void* noncedata) {
- secp256k1_ecdsa_sig_t sig;
- secp256k1_scalar_t sec, non, msg;
- int ret = 0;
- int overflow = 0;
- unsigned int count = 0;
- DEBUG_CHECK(secp256k1_ecmult_gen_consts != NULL);
- DEBUG_CHECK(msg32 != NULL);
- DEBUG_CHECK(signature != NULL);
- DEBUG_CHECK(signaturelen != NULL);
- DEBUG_CHECK(seckey != NULL);
- if (noncefp == NULL) {
- noncefp = secp256k1_nonce_function_default;
- }
-
- secp256k1_scalar_set_b32(&sec, seckey, &overflow);
- /* Fail if the secret key is invalid. */
- if (!overflow && !secp256k1_scalar_is_zero(&sec)) {
- secp256k1_scalar_set_b32(&msg, msg32, NULL);
- while (1) {
- unsigned char nonce32[32];
- ret = noncefp(nonce32, msg32, seckey, count, noncedata);
- if (!ret) {
- break;
- }
- secp256k1_scalar_set_b32(&non, nonce32, &overflow);
- memset(nonce32, 0, 32);
- if (!secp256k1_scalar_is_zero(&non) && !overflow) {
- if (secp256k1_ecdsa_sig_sign(&sig, &sec, &msg, &non, NULL)) {
- break;
- }
- }
- count++;
- }
- if (ret) {
- ret = secp256k1_ecdsa_sig_serialize(signature, signaturelen, &sig);
- }
- secp256k1_scalar_clear(&msg);
- secp256k1_scalar_clear(&non);
- secp256k1_scalar_clear(&sec);
- }
- if (!ret) {
- *signaturelen = 0;
- }
- return ret;
-}
-
-int secp256k1_ecdsa_sign_compact(const unsigned char *msg32, unsigned char *sig64, const unsigned char *seckey, secp256k1_nonce_function_t noncefp, const void* noncedata, int *recid) {
- secp256k1_ecdsa_sig_t sig;
- secp256k1_scalar_t sec, non, msg;
- int ret = 0;
- int overflow = 0;
- unsigned int count = 0;
- DEBUG_CHECK(secp256k1_ecmult_gen_consts != NULL);
- DEBUG_CHECK(msg32 != NULL);
- DEBUG_CHECK(sig64 != NULL);
- DEBUG_CHECK(seckey != NULL);
- if (noncefp == NULL) {
- noncefp = secp256k1_nonce_function_default;
- }
-
- secp256k1_scalar_set_b32(&sec, seckey, &overflow);
- /* Fail if the secret key is invalid. */
- if (!overflow && !secp256k1_scalar_is_zero(&sec)) {
- secp256k1_scalar_set_b32(&msg, msg32, NULL);
- while (1) {
- unsigned char nonce32[32];
- ret = noncefp(nonce32, msg32, seckey, count, noncedata);
- if (!ret) {
- break;
- }
- secp256k1_scalar_set_b32(&non, nonce32, &overflow);
- memset(nonce32, 0, 32);
- if (!secp256k1_scalar_is_zero(&non) && !overflow) {
- if (secp256k1_ecdsa_sig_sign(&sig, &sec, &msg, &non, recid)) {
- break;
- }
- }
- count++;
- }
- if (ret) {
- secp256k1_scalar_get_b32(sig64, &sig.r);
- secp256k1_scalar_get_b32(sig64 + 32, &sig.s);
- }
- secp256k1_scalar_clear(&msg);
- secp256k1_scalar_clear(&non);
- secp256k1_scalar_clear(&sec);
- }
- if (!ret) {
- memset(sig64, 0, 64);
- }
- return ret;
-}
-
-int secp256k1_ecdsa_recover_compact(const unsigned char *msg32, const unsigned char *sig64, unsigned char *pubkey, int *pubkeylen, int compressed, int recid) {
- secp256k1_ge_t q;
- secp256k1_ecdsa_sig_t sig;
- secp256k1_scalar_t m;
- int ret = 0;
- int overflow = 0;
- DEBUG_CHECK(secp256k1_ecmult_consts != NULL);
- DEBUG_CHECK(msg32 != NULL);
- DEBUG_CHECK(sig64 != NULL);
- DEBUG_CHECK(pubkey != NULL);
- DEBUG_CHECK(pubkeylen != NULL);
- DEBUG_CHECK(recid >= 0 && recid <= 3);
-
- secp256k1_scalar_set_b32(&sig.r, sig64, &overflow);
- if (!overflow) {
- secp256k1_scalar_set_b32(&sig.s, sig64 + 32, &overflow);
- if (!overflow) {
- secp256k1_scalar_set_b32(&m, msg32, NULL);
-
- if (secp256k1_ecdsa_sig_recover(&sig, &q, &m, recid)) {
- ret = secp256k1_eckey_pubkey_serialize(&q, pubkey, pubkeylen, compressed);
- }
- }
- }
- return ret;
-}
-
-int secp256k1_ec_seckey_verify(const unsigned char *seckey) {
- secp256k1_scalar_t sec;
- int ret;
- int overflow;
- DEBUG_CHECK(seckey != NULL);
-
- secp256k1_scalar_set_b32(&sec, seckey, &overflow);
- ret = !secp256k1_scalar_is_zero(&sec) && !overflow;
- secp256k1_scalar_clear(&sec);
- return ret;
-}
-
-int secp256k1_ec_pubkey_verify(const unsigned char *pubkey, int pubkeylen) {
- secp256k1_ge_t q;
- DEBUG_CHECK(pubkey != NULL);
-
- return secp256k1_eckey_pubkey_parse(&q, pubkey, pubkeylen);
-}
-
-int secp256k1_ec_pubkey_create(unsigned char *pubkey, int *pubkeylen, const unsigned char *seckey, int compressed) {
- secp256k1_gej_t pj;
- secp256k1_ge_t p;
- secp256k1_scalar_t sec;
- int overflow;
- int ret = 0;
- DEBUG_CHECK(secp256k1_ecmult_gen_consts != NULL);
- DEBUG_CHECK(pubkey != NULL);
- DEBUG_CHECK(pubkeylen != NULL);
- DEBUG_CHECK(seckey != NULL);
-
- secp256k1_scalar_set_b32(&sec, seckey, &overflow);
- if (!overflow) {
- secp256k1_ecmult_gen(&pj, &sec);
- secp256k1_scalar_clear(&sec);
- secp256k1_ge_set_gej(&p, &pj);
- ret = secp256k1_eckey_pubkey_serialize(&p, pubkey, pubkeylen, compressed);
- }
- if (!ret) {
- *pubkeylen = 0;
- }
- return ret;
-}
-
-int secp256k1_ec_pubkey_decompress(unsigned char *pubkey, int *pubkeylen) {
- secp256k1_ge_t p;
- int ret = 0;
- DEBUG_CHECK(pubkey != NULL);
- DEBUG_CHECK(pubkeylen != NULL);
-
- if (secp256k1_eckey_pubkey_parse(&p, pubkey, *pubkeylen)) {
- ret = secp256k1_eckey_pubkey_serialize(&p, pubkey, pubkeylen, 0);
- }
- return ret;
-}
-
-int secp256k1_ec_privkey_tweak_add(unsigned char *seckey, const unsigned char *tweak) {
- secp256k1_scalar_t term;
- secp256k1_scalar_t sec;
- int ret = 0;
- int overflow = 0;
- DEBUG_CHECK(seckey != NULL);
- DEBUG_CHECK(tweak != NULL);
-
- secp256k1_scalar_set_b32(&term, tweak, &overflow);
- secp256k1_scalar_set_b32(&sec, seckey, NULL);
-
- ret = secp256k1_eckey_privkey_tweak_add(&sec, &term) && !overflow;
- if (ret) {
- secp256k1_scalar_get_b32(seckey, &sec);
- }
-
- secp256k1_scalar_clear(&sec);
- secp256k1_scalar_clear(&term);
- return ret;
-}
-
-int secp256k1_ec_pubkey_tweak_add(unsigned char *pubkey, int pubkeylen, const unsigned char *tweak) {
- secp256k1_ge_t p;
- secp256k1_scalar_t term;
- int ret = 0;
- int overflow = 0;
- DEBUG_CHECK(secp256k1_ecmult_consts != NULL);
- DEBUG_CHECK(pubkey != NULL);
- DEBUG_CHECK(tweak != NULL);
-
- secp256k1_scalar_set_b32(&term, tweak, &overflow);
- if (!overflow) {
- ret = secp256k1_eckey_pubkey_parse(&p, pubkey, pubkeylen);
- if (ret) {
- ret = secp256k1_eckey_pubkey_tweak_add(&p, &term);
- }
- if (ret) {
- int oldlen = pubkeylen;
- ret = secp256k1_eckey_pubkey_serialize(&p, pubkey, &pubkeylen, oldlen <= 33);
- VERIFY_CHECK(pubkeylen == oldlen);
- }
- }
-
- return ret;
-}
-
-int secp256k1_ec_privkey_tweak_mul(unsigned char *seckey, const unsigned char *tweak) {
- secp256k1_scalar_t factor;
- secp256k1_scalar_t sec;
- int ret = 0;
- int overflow = 0;
- DEBUG_CHECK(seckey != NULL);
- DEBUG_CHECK(tweak != NULL);
-
- secp256k1_scalar_set_b32(&factor, tweak, &overflow);
- secp256k1_scalar_set_b32(&sec, seckey, NULL);
- ret = secp256k1_eckey_privkey_tweak_mul(&sec, &factor) && !overflow;
- if (ret) {
- secp256k1_scalar_get_b32(seckey, &sec);
- }
-
- secp256k1_scalar_clear(&sec);
- secp256k1_scalar_clear(&factor);
- return ret;
-}
-
-int secp256k1_ec_pubkey_tweak_mul(unsigned char *pubkey, int pubkeylen, const unsigned char *tweak) {
- secp256k1_ge_t p;
- secp256k1_scalar_t factor;
- int ret = 0;
- int overflow = 0;
- DEBUG_CHECK(secp256k1_ecmult_consts != NULL);
- DEBUG_CHECK(pubkey != NULL);
- DEBUG_CHECK(tweak != NULL);
-
- secp256k1_scalar_set_b32(&factor, tweak, &overflow);
- if (!overflow) {
- ret = secp256k1_eckey_pubkey_parse(&p, pubkey, pubkeylen);
- if (ret) {
- ret = secp256k1_eckey_pubkey_tweak_mul(&p, &factor);
- }
- if (ret) {
- int oldlen = pubkeylen;
- ret = secp256k1_eckey_pubkey_serialize(&p, pubkey, &pubkeylen, oldlen <= 33);
- VERIFY_CHECK(pubkeylen == oldlen);
- }
- }
-
- return ret;
-}
-
-int secp256k1_ec_privkey_export(const unsigned char *seckey, unsigned char *privkey, int *privkeylen, int compressed) {
- secp256k1_scalar_t key;
- int ret = 0;
- DEBUG_CHECK(seckey != NULL);
- DEBUG_CHECK(privkey != NULL);
- DEBUG_CHECK(privkeylen != NULL);
-
- secp256k1_scalar_set_b32(&key, seckey, NULL);
- ret = secp256k1_eckey_privkey_serialize(privkey, privkeylen, &key, compressed);
- secp256k1_scalar_clear(&key);
- return ret;
-}
-
-int secp256k1_ec_privkey_import(unsigned char *seckey, const unsigned char *privkey, int privkeylen) {
- secp256k1_scalar_t key;
- int ret = 0;
- DEBUG_CHECK(seckey != NULL);
- DEBUG_CHECK(privkey != NULL);
-
- ret = secp256k1_eckey_privkey_parse(&key, privkey, privkeylen);
- if (ret) {
- secp256k1_scalar_get_b32(seckey, &key);
- }
- secp256k1_scalar_clear(&key);
- return ret;
-}