diff options
Diffstat (limited to 'common/mclock/simclock.go')
-rw-r--r-- | common/mclock/simclock.go | 129 |
1 files changed, 129 insertions, 0 deletions
diff --git a/common/mclock/simclock.go b/common/mclock/simclock.go new file mode 100644 index 000000000..e014f5615 --- /dev/null +++ b/common/mclock/simclock.go @@ -0,0 +1,129 @@ +// Copyright 2018 The go-ethereum Authors +// This file is part of the go-ethereum library. +// +// The go-ethereum library is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// The go-ethereum library is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. + +package mclock + +import ( + "sync" + "time" +) + +// Simulated implements a virtual Clock for reproducible time-sensitive tests. It +// simulates a scheduler on a virtual timescale where actual processing takes zero time. +// +// The virtual clock doesn't advance on its own, call Run to advance it and execute timers. +// Since there is no way to influence the Go scheduler, testing timeout behaviour involving +// goroutines needs special care. A good way to test such timeouts is as follows: First +// perform the action that is supposed to time out. Ensure that the timer you want to test +// is created. Then run the clock until after the timeout. Finally observe the effect of +// the timeout using a channel or semaphore. +type Simulated struct { + now AbsTime + scheduled []event + mu sync.RWMutex + cond *sync.Cond +} + +type event struct { + do func() + at AbsTime +} + +// Run moves the clock by the given duration, executing all timers before that duration. +func (s *Simulated) Run(d time.Duration) { + s.mu.Lock() + defer s.mu.Unlock() + s.init() + + end := s.now + AbsTime(d) + for len(s.scheduled) > 0 { + ev := s.scheduled[0] + if ev.at > end { + break + } + s.now = ev.at + ev.do() + s.scheduled = s.scheduled[1:] + } + s.now = end +} + +func (s *Simulated) ActiveTimers() int { + s.mu.RLock() + defer s.mu.RUnlock() + + return len(s.scheduled) +} + +func (s *Simulated) WaitForTimers(n int) { + s.mu.Lock() + defer s.mu.Unlock() + s.init() + + for len(s.scheduled) < n { + s.cond.Wait() + } +} + +// Now implements Clock. +func (s *Simulated) Now() AbsTime { + s.mu.RLock() + defer s.mu.RUnlock() + + return s.now +} + +// Sleep implements Clock. +func (s *Simulated) Sleep(d time.Duration) { + <-s.After(d) +} + +// After implements Clock. +func (s *Simulated) After(d time.Duration) <-chan time.Time { + after := make(chan time.Time, 1) + s.insert(d, func() { + after <- (time.Time{}).Add(time.Duration(s.now)) + }) + return after +} + +func (s *Simulated) insert(d time.Duration, do func()) { + s.mu.Lock() + defer s.mu.Unlock() + s.init() + + at := s.now + AbsTime(d) + l, h := 0, len(s.scheduled) + ll := h + for l != h { + m := (l + h) / 2 + if at < s.scheduled[m].at { + h = m + } else { + l = m + 1 + } + } + s.scheduled = append(s.scheduled, event{}) + copy(s.scheduled[l+1:], s.scheduled[l:ll]) + s.scheduled[l] = event{do: do, at: at} + s.cond.Broadcast() +} + +func (s *Simulated) init() { + if s.cond == nil { + s.cond = sync.NewCond(&s.mu) + } +} |