aboutsummaryrefslogtreecommitdiffstats
path: root/Godeps/_workspace/src/github.com/Gustav-Simonsson/go-opencl/cl/cl_test.go
blob: 7659ce14fdc38fba907e5589f3559c364a9c755d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
package cl

import (
    "math/rand"
    "reflect"
    "strings"
    "testing"
)

var kernelSource = `
__kernel void square(
   __global float* input,
   __global float* output,
   const unsigned int count)
{
   int i = get_global_id(0);
   if(i < count)
       output[i] = input[i] * input[i];
}
`

func getObjectStrings(object interface{}) map[string]string {
    v := reflect.ValueOf(object)
    t := reflect.TypeOf(object)

    strs := make(map[string]string)

    numMethods := t.NumMethod()
    for i := 0; i < numMethods; i++ {
        method := t.Method(i)
        if method.Type.NumIn() == 1 && method.Type.NumOut() == 1 && method.Type.Out(0).Kind() == reflect.String {
            // this is a string-returning method with (presumably) only a pointer receiver parameter
            // call it
            outs := v.Method(i).Call([]reflect.Value{})
            // put the result in our map
            strs[method.Name] = (outs[0].Interface()).(string)
        }
    }

    return strs
}

func TestPlatformStringsContainNoNULs(t *testing.T) {
    platforms, err := GetPlatforms()
    if err != nil {
        t.Fatalf("Failed to get platforms: %+v", err)
    }

    for _, p := range platforms {
        for key, value := range getObjectStrings(p) {
            if strings.Contains(value, "\x00") {
                t.Fatalf("platform string %q =  %+q contains NUL", key, value)
            }
        }
    }
}

func TestDeviceStringsContainNoNULs(t *testing.T) {
    platforms, err := GetPlatforms()
    if err != nil {
        t.Fatalf("Failed to get platforms: %+v", err)
    }

    for _, p := range platforms {
        devs, err := p.GetDevices(DeviceTypeAll)
        if err != nil {
            t.Fatalf("Failed to get devices for platform %q: %+v", p.Name(), err)
        }

        for _, d := range devs {
            for key, value := range getObjectStrings(d) {
                if strings.Contains(value, "\x00") {
                    t.Fatalf("device string %q =  %+q contains NUL", key, value)
                }
            }
        }
    }
}

func TestHello(t *testing.T) {
    var data [1024]float32
    for i := 0; i < len(data); i++ {
        data[i] = rand.Float32()
    }

    platforms, err := GetPlatforms()
    if err != nil {
        t.Fatalf("Failed to get platforms: %+v", err)
    }
    for i, p := range platforms {
        t.Logf("Platform %d:", i)
        t.Logf("  Name: %s", p.Name())
        t.Logf("  Vendor: %s", p.Vendor())
        t.Logf("  Profile: %s", p.Profile())
        t.Logf("  Version: %s", p.Version())
        t.Logf("  Extensions: %s", p.Extensions())
    }
    platform := platforms[0]

    devices, err := platform.GetDevices(DeviceTypeAll)
    if err != nil {
        t.Fatalf("Failed to get devices: %+v", err)
    }
    if len(devices) == 0 {
        t.Fatalf("GetDevices returned no devices")
    }
    deviceIndex := -1
    for i, d := range devices {
        if deviceIndex < 0 && d.Type() == DeviceTypeGPU {
            deviceIndex = i
        }
        t.Logf("Device %d (%s): %s", i, d.Type(), d.Name())
        t.Logf("  Address Bits: %d", d.AddressBits())
        t.Logf("  Available: %+v", d.Available())
        // t.Logf("  Built-In Kernels: %s", d.BuiltInKernels())
        t.Logf("  Compiler Available: %+v", d.CompilerAvailable())
        t.Logf("  Double FP Config: %s", d.DoubleFPConfig())
        t.Logf("  Driver Version: %s", d.DriverVersion())
        t.Logf("  Error Correction Supported: %+v", d.ErrorCorrectionSupport())
        t.Logf("  Execution Capabilities: %s", d.ExecutionCapabilities())
        t.Logf("  Extensions: %s", d.Extensions())
        t.Logf("  Global Memory Cache Type: %s", d.GlobalMemCacheType())
        t.Logf("  Global Memory Cacheline Size: %d KB", d.GlobalMemCachelineSize()/1024)
        t.Logf("  Global Memory Size: %d MB", d.GlobalMemSize()/(1024*1024))
        t.Logf("  Half FP Config: %s", d.HalfFPConfig())
        t.Logf("  Host Unified Memory: %+v", d.HostUnifiedMemory())
        t.Logf("  Image Support: %+v", d.ImageSupport())
        t.Logf("  Image2D Max Dimensions: %d x %d", d.Image2DMaxWidth(), d.Image2DMaxHeight())
        t.Logf("  Image3D Max Dimenionns: %d x %d x %d", d.Image3DMaxWidth(), d.Image3DMaxHeight(), d.Image3DMaxDepth())
        // t.Logf("  Image Max Buffer Size: %d", d.ImageMaxBufferSize())
        // t.Logf("  Image Max Array Size: %d", d.ImageMaxArraySize())
        // t.Logf("  Linker Available: %+v", d.LinkerAvailable())
        t.Logf("  Little Endian: %+v", d.EndianLittle())
        t.Logf("  Local Mem Size Size: %d KB", d.LocalMemSize()/1024)
        t.Logf("  Local Mem Type: %s", d.LocalMemType())
        t.Logf("  Max Clock Frequency: %d", d.MaxClockFrequency())
        t.Logf("  Max Compute Units: %d", d.MaxComputeUnits())
        t.Logf("  Max Constant Args: %d", d.MaxConstantArgs())
        t.Logf("  Max Constant Buffer Size: %d KB", d.MaxConstantBufferSize()/1024)
        t.Logf("  Max Mem Alloc Size: %d KB", d.MaxMemAllocSize()/1024)
        t.Logf("  Max Parameter Size: %d", d.MaxParameterSize())
        t.Logf("  Max Read-Image Args: %d", d.MaxReadImageArgs())
        t.Logf("  Max Samplers: %d", d.MaxSamplers())
        t.Logf("  Max Work Group Size: %d", d.MaxWorkGroupSize())
        t.Logf("  Max Work Item Dimensions: %d", d.MaxWorkItemDimensions())
        t.Logf("  Max Work Item Sizes: %d", d.MaxWorkItemSizes())
        t.Logf("  Max Write-Image Args: %d", d.MaxWriteImageArgs())
        t.Logf("  Memory Base Address Alignment: %d", d.MemBaseAddrAlign())
        t.Logf("  Native Vector Width Char: %d", d.NativeVectorWidthChar())
        t.Logf("  Native Vector Width Short: %d", d.NativeVectorWidthShort())
        t.Logf("  Native Vector Width Int: %d", d.NativeVectorWidthInt())
        t.Logf("  Native Vector Width Long: %d", d.NativeVectorWidthLong())
        t.Logf("  Native Vector Width Float: %d", d.NativeVectorWidthFloat())
        t.Logf("  Native Vector Width Double: %d", d.NativeVectorWidthDouble())
        t.Logf("  Native Vector Width Half: %d", d.NativeVectorWidthHalf())
        t.Logf("  OpenCL C Version: %s", d.OpenCLCVersion())
        // t.Logf("  Parent Device: %+v", d.ParentDevice())
        t.Logf("  Profile: %s", d.Profile())
        t.Logf("  Profiling Timer Resolution: %d", d.ProfilingTimerResolution())
        t.Logf("  Vendor: %s", d.Vendor())
        t.Logf("  Version: %s", d.Version())
    }
    if deviceIndex < 0 {
        deviceIndex = 0
    }
    device := devices[deviceIndex]
    t.Logf("Using device %d", deviceIndex)
    context, err := CreateContext([]*Device{device})
    if err != nil {
        t.Fatalf("CreateContext failed: %+v", err)
    }
    // imageFormats, err := context.GetSupportedImageFormats(0, MemObjectTypeImage2D)
    // if err != nil {
    //  t.Fatalf("GetSupportedImageFormats failed: %+v", err)
    // }
    // t.Logf("Supported image formats: %+v", imageFormats)
    queue, err := context.CreateCommandQueue(device, 0)
    if err != nil {
        t.Fatalf("CreateCommandQueue failed: %+v", err)
    }
    program, err := context.CreateProgramWithSource([]string{kernelSource})
    if err != nil {
        t.Fatalf("CreateProgramWithSource failed: %+v", err)
    }
    if err := program.BuildProgram(nil, ""); err != nil {
        t.Fatalf("BuildProgram failed: %+v", err)
    }
    kernel, err := program.CreateKernel("square")
    if err != nil {
        t.Fatalf("CreateKernel failed: %+v", err)
    }
    for i := 0; i < 3; i++ {
        name, err := kernel.ArgName(i)
        if err == ErrUnsupported {
            break
        } else if err != nil {
            t.Errorf("GetKernelArgInfo for name failed: %+v", err)
            break
        } else {
            t.Logf("Kernel arg %d: %s", i, name)
        }
    }
    input, err := context.CreateEmptyBuffer(MemReadOnly, 4*len(data))
    if err != nil {
        t.Fatalf("CreateBuffer failed for input: %+v", err)
    }
    output, err := context.CreateEmptyBuffer(MemReadOnly, 4*len(data))
    if err != nil {
        t.Fatalf("CreateBuffer failed for output: %+v", err)
    }
    if _, err := queue.EnqueueWriteBufferFloat32(input, true, 0, data[:], nil); err != nil {
        t.Fatalf("EnqueueWriteBufferFloat32 failed: %+v", err)
    }
    if err := kernel.SetArgs(input, output, uint32(len(data))); err != nil {
        t.Fatalf("SetKernelArgs failed: %+v", err)
    }

    local, err := kernel.WorkGroupSize(device)
    if err != nil {
        t.Fatalf("WorkGroupSize failed: %+v", err)
    }
    t.Logf("Work group size: %d", local)
    size, _ := kernel.PreferredWorkGroupSizeMultiple(nil)
    t.Logf("Preferred Work Group Size Multiple: %d", size)

    global := len(data)
    d := len(data) % local
    if d != 0 {
        global += local - d
    }
    if _, err := queue.EnqueueNDRangeKernel(kernel, nil, []int{global}, []int{local}, nil); err != nil {
        t.Fatalf("EnqueueNDRangeKernel failed: %+v", err)
    }

    if err := queue.Finish(); err != nil {
        t.Fatalf("Finish failed: %+v", err)
    }

    results := make([]float32, len(data))
    if _, err := queue.EnqueueReadBufferFloat32(output, true, 0, results, nil); err != nil {
        t.Fatalf("EnqueueReadBufferFloat32 failed: %+v", err)
    }

    correct := 0
    for i, v := range data {
        if results[i] == v*v {
            correct++
        }
    }

    if correct != len(data) {
        t.Fatalf("%d/%d correct values", correct, len(data))
    }
}