1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package math provides integer math utilities.
package math
import (
"fmt"
"math/big"
)
var (
tt255 = BigPow(2, 255)
tt256 = BigPow(2, 256)
tt256m1 = new(big.Int).Sub(tt256, big.NewInt(1))
MaxBig256 = new(big.Int).Set(tt256m1)
tt63 = BigPow(2, 63)
MaxBig63 = new(big.Int).Sub(tt63, big.NewInt(1))
)
const (
// number of bits in a big.Word
wordBits = 32 << (uint64(^big.Word(0)) >> 63)
// number of bytes in a big.Word
wordBytes = wordBits / 8
)
// HexOrDecimal256 marshals big.Int as hex or decimal.
type HexOrDecimal256 big.Int
// UnmarshalText implements encoding.TextUnmarshaler.
func (i *HexOrDecimal256) UnmarshalText(input []byte) error {
bigint, ok := ParseBig256(string(input))
if !ok {
return fmt.Errorf("invalid hex or decimal integer %q", input)
}
*i = HexOrDecimal256(*bigint)
return nil
}
// MarshalText implements encoding.TextMarshaler.
func (i *HexOrDecimal256) MarshalText() ([]byte, error) {
if i == nil {
return []byte("0x0"), nil
}
return []byte(fmt.Sprintf("%#x", (*big.Int)(i))), nil
}
// ParseBig256 parses s as a 256 bit integer in decimal or hexadecimal syntax.
// Leading zeros are accepted. The empty string parses as zero.
func ParseBig256(s string) (*big.Int, bool) {
if s == "" {
return new(big.Int), true
}
var bigint *big.Int
var ok bool
if len(s) >= 2 && (s[:2] == "0x" || s[:2] == "0X") {
bigint, ok = new(big.Int).SetString(s[2:], 16)
} else {
bigint, ok = new(big.Int).SetString(s, 10)
}
if ok && bigint.BitLen() > 256 {
bigint, ok = nil, false
}
return bigint, ok
}
// MustParseBig parses s as a 256 bit big integer and panics if the string is invalid.
func MustParseBig256(s string) *big.Int {
v, ok := ParseBig256(s)
if !ok {
panic("invalid 256 bit integer: " + s)
}
return v
}
// BigPow returns a ** b as a big integer.
func BigPow(a, b int64) *big.Int {
r := big.NewInt(a)
return r.Exp(r, big.NewInt(b), nil)
}
// BigMax returns the larger of x or y.
func BigMax(x, y *big.Int) *big.Int {
if x.Cmp(y) < 0 {
return y
}
return x
}
// BigMin returns the smaller of x or y.
func BigMin(x, y *big.Int) *big.Int {
if x.Cmp(y) > 0 {
return y
}
return x
}
// FirstBitSet returns the index of the first 1 bit in v, counting from LSB.
func FirstBitSet(v *big.Int) int {
for i := 0; i < v.BitLen(); i++ {
if v.Bit(i) > 0 {
return i
}
}
return v.BitLen()
}
// PaddedBigBytes encodes a big integer as a big-endian byte slice. The length
// of the slice is at least n bytes.
func PaddedBigBytes(bigint *big.Int, n int) []byte {
if bigint.BitLen()/8 >= n {
return bigint.Bytes()
}
ret := make([]byte, n)
ReadBits(bigint, ret)
return ret
}
// bigEndianByteAt returns the byte at position n,
// if bigint is considered big-endian.
// So n==0 returns the least significant byte
func bigEndianByteAt(bigint *big.Int, n int) byte {
words := bigint.Bits()
// Check word-bucket the byte will reside in
i := n / wordBytes
if i >= len(words) {
return byte(0)
}
word := words[i]
// Offset of the byte
shift := 8 * uint(n%wordBytes)
return byte(word >> shift)
}
// Byte returns the byte at position n,
// if bigint is considered little-endian with the supplied padlength.
// n==0 returns the most significant byte
// bigint '5', padlength 32, n=31 => 5
func Byte(bigint *big.Int, padlength, n int) byte {
if n >= padlength {
return byte(0)
}
return bigEndianByteAt(bigint, padlength-1-n)
}
// ReadBits encodes the absolute value of bigint as big-endian bytes. Callers must ensure
// that buf has enough space. If buf is too short the result will be incomplete.
func ReadBits(bigint *big.Int, buf []byte) {
i := len(buf)
for _, d := range bigint.Bits() {
for j := 0; j < wordBytes && i > 0; j++ {
i--
buf[i] = byte(d)
d >>= 8
}
}
}
// U256 encodes as a 256 bit two's complement number. This operation is destructive.
func U256(x *big.Int) *big.Int {
return x.And(x, tt256m1)
}
// S256 interprets x as a two's complement number.
// x must not exceed 256 bits (the result is undefined if it does) and is not modified.
//
// S256(0) = 0
// S256(1) = 1
// S256(2**255) = -2**255
// S256(2**256-1) = -1
func S256(x *big.Int) *big.Int {
if x.Cmp(tt255) < 0 {
return x
} else {
return new(big.Int).Sub(x, tt256)
}
}
// Exp implements exponentiation by squaring.
// Exp returns a newly-allocated big integer and does not change
// base or exponent. The result is truncated to 256 bits.
//
// Courtesy @karalabe and @chfast
func Exp(base, exponent *big.Int) *big.Int {
result := big.NewInt(1)
for _, word := range exponent.Bits() {
for i := 0; i < wordBits; i++ {
if word&1 == 1 {
U256(result.Mul(result, base))
}
U256(base.Mul(base, base))
word >>= 1
}
}
return result
}
|