aboutsummaryrefslogtreecommitdiffstats
path: root/core/blockchain.go
blob: 8d90c9348bed5d92a16b46adffa418b17f738f0f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

// Package core implements the Ethereum consensus protocol.
package core

import (
    "bytes"
    "errors"
    "fmt"
    "io"
    "math/big"
    mrand "math/rand"
    "sync"
    "sync/atomic"
    "time"

    coreCommon "github.com/dexon-foundation/dexon-consensus-core/common"
    coreTypes "github.com/dexon-foundation/dexon-consensus-core/core/types"

    "github.com/dexon-foundation/dexon/common"
    "github.com/dexon-foundation/dexon/common/mclock"
    "github.com/dexon-foundation/dexon/common/prque"
    "github.com/dexon-foundation/dexon/consensus"
    "github.com/dexon-foundation/dexon/core/rawdb"
    "github.com/dexon-foundation/dexon/core/state"
    "github.com/dexon-foundation/dexon/core/types"
    "github.com/dexon-foundation/dexon/core/vm"
    "github.com/dexon-foundation/dexon/crypto"
    "github.com/dexon-foundation/dexon/ethdb"
    "github.com/dexon-foundation/dexon/event"
    "github.com/dexon-foundation/dexon/log"
    "github.com/dexon-foundation/dexon/metrics"
    "github.com/dexon-foundation/dexon/params"
    "github.com/dexon-foundation/dexon/rlp"
    "github.com/dexon-foundation/dexon/trie"
    "github.com/hashicorp/golang-lru"
)

var (
    blockInsertTimer     = metrics.NewRegisteredTimer("chain/inserts", nil)
    blockValidationTimer = metrics.NewRegisteredTimer("chain/validation", nil)
    blockExecutionTimer  = metrics.NewRegisteredTimer("chain/execution", nil)
    blockWriteTimer      = metrics.NewRegisteredTimer("chain/write", nil)

    ErrNoGenesis = errors.New("Genesis not found in chain")
)

const (
    bodyCacheLimit      = 256
    blockCacheLimit     = 256
    receiptsCacheLimit  = 32
    maxFutureBlocks     = 256
    maxTimeFutureBlocks = 30
    badBlockLimit       = 10
    triesInMemory       = 128

    // BlockChainVersion ensures that an incompatible database forces a resync from scratch.
    BlockChainVersion uint64 = 3
)

// CacheConfig contains the configuration values for the trie caching/pruning
// that's resident in a blockchain.
type CacheConfig struct {
    Disabled       bool          // Whether to disable trie write caching (archive node)
    TrieCleanLimit int           // Memory allowance (MB) to use for caching trie nodes in memory
    TrieDirtyLimit int           // Memory limit (MB) at which to start flushing dirty trie nodes to disk
    TrieTimeLimit  time.Duration // Time limit after which to flush the current in-memory trie to disk
}

// BlockChain represents the canonical chain given a database with a genesis
// block. The Blockchain manages chain imports, reverts, chain reorganisations.
//
// Importing blocks in to the block chain happens according to the set of rules
// defined by the two stage Validator. Processing of blocks is done using the
// Processor which processes the included transaction. The validation of the state
// is done in the second part of the Validator. Failing results in aborting of
// the import.
//
// The BlockChain also helps in returning blocks from **any** chain included
// in the database as well as blocks that represents the canonical chain. It's
// important to note that GetBlock can return any block and does not need to be
// included in the canonical one where as GetBlockByNumber always represents the
// canonical chain.
type BlockChain struct {
    chainConfig *params.ChainConfig // Chain & network configuration
    cacheConfig *CacheConfig        // Cache configuration for pruning

    db     ethdb.Database // Low level persistent database to store final content in
    triegc *prque.Prque   // Priority queue mapping block numbers to tries to gc
    gcproc time.Duration  // Accumulates canonical block processing for trie dumping

    hc            *HeaderChain
    rmLogsFeed    event.Feed
    chainFeed     event.Feed
    chainSideFeed event.Feed
    chainHeadFeed event.Feed
    logsFeed      event.Feed
    scope         event.SubscriptionScope
    genesisBlock  *types.Block

    mu      sync.RWMutex // global mutex for locking chain operations
    chainmu sync.RWMutex // blockchain insertion lock
    procmu  sync.RWMutex // block processor lock

    checkpoint       int          // checkpoint counts towards the new checkpoint
    currentBlock     atomic.Value // Current head of the block chain
    currentFastBlock atomic.Value // Current head of the fast-sync chain (may be above the block chain!)

    stateCache    state.Database // State database to reuse between imports (contains state cache)
    bodyCache     *lru.Cache     // Cache for the most recent block bodies
    bodyRLPCache  *lru.Cache     // Cache for the most recent block bodies in RLP encoded format
    receiptsCache *lru.Cache     // Cache for the most recent receipts per block
    blockCache    *lru.Cache     // Cache for the most recent entire blocks
    futureBlocks  *lru.Cache     // future blocks are blocks added for later processing

    quit    chan struct{} // blockchain quit channel
    running int32         // running must be called atomically
    // procInterrupt must be atomically called
    procInterrupt int32          // interrupt signaler for block processing
    wg            sync.WaitGroup // chain processing wait group for shutting down

    engine    consensus.Engine
    processor Processor // block processor interface
    validator Validator // block and state validator interface
    vmConfig  vm.Config

    badBlocks      *lru.Cache              // Bad block cache
    shouldPreserve func(*types.Block) bool // Function used to determine whether should preserve the given block.

    confirmedBlockMu       sync.Mutex
    confirmedBlock         map[coreCommon.Hash]*coreTypes.Block
    filteredConfirmedBlock map[uint32]map[coreCommon.Hash]*coreTypes.Block
}

// NewBlockChain returns a fully initialised block chain using information
// available in the database. It initialises the default Ethereum Validator and
// Processor.
func NewBlockChain(db ethdb.Database, cacheConfig *CacheConfig, chainConfig *params.ChainConfig, engine consensus.Engine, vmConfig vm.Config, shouldPreserve func(block *types.Block) bool) (*BlockChain, error) {
    if cacheConfig == nil {
        cacheConfig = &CacheConfig{
            TrieCleanLimit: 256,
            TrieDirtyLimit: 256,
            TrieTimeLimit:  5 * time.Minute,
        }
    }
    bodyCache, _ := lru.New(bodyCacheLimit)
    bodyRLPCache, _ := lru.New(bodyCacheLimit)
    receiptsCache, _ := lru.New(receiptsCacheLimit)
    blockCache, _ := lru.New(blockCacheLimit)
    futureBlocks, _ := lru.New(maxFutureBlocks)
    badBlocks, _ := lru.New(badBlockLimit)

    bc := &BlockChain{
        chainConfig:            chainConfig,
        cacheConfig:            cacheConfig,
        db:                     db,
        triegc:                 prque.New(nil),
        stateCache:             state.NewDatabaseWithCache(db, cacheConfig.TrieCleanLimit),
        quit:                   make(chan struct{}),
        shouldPreserve:         shouldPreserve,
        bodyCache:              bodyCache,
        bodyRLPCache:           bodyRLPCache,
        receiptsCache:          receiptsCache,
        blockCache:             blockCache,
        futureBlocks:           futureBlocks,
        engine:                 engine,
        vmConfig:               vmConfig,
        badBlocks:              badBlocks,
        confirmedBlock:         make(map[coreCommon.Hash]*coreTypes.Block),
        filteredConfirmedBlock: make(map[uint32]map[coreCommon.Hash]*coreTypes.Block),
    }
    bc.SetValidator(NewBlockValidator(chainConfig, bc, engine))
    bc.SetProcessor(NewStateProcessor(chainConfig, bc, engine))

    var err error
    bc.hc, err = NewHeaderChain(db, chainConfig, engine, bc.getProcInterrupt)
    if err != nil {
        return nil, err
    }
    bc.genesisBlock = bc.GetBlockByNumber(0)
    if bc.genesisBlock == nil {
        return nil, ErrNoGenesis
    }
    if err := bc.loadLastState(); err != nil {
        return nil, err
    }
    // Check the current state of the block hashes and make sure that we do not have any of the bad blocks in our chain
    for hash := range BadHashes {
        if header := bc.GetHeaderByHash(hash); header != nil {
            // get the canonical block corresponding to the offending header's number
            headerByNumber := bc.GetHeaderByNumber(header.Number.Uint64())
            // make sure the headerByNumber (if present) is in our current canonical chain
            if headerByNumber != nil && headerByNumber.Hash() == header.Hash() {
                log.Error("Found bad hash, rewinding chain", "number", header.Number, "hash", header.ParentHash)
                bc.SetHead(header.Number.Uint64() - 1)
                log.Error("Chain rewind was successful, resuming normal operation")
            }
        }
    }
    // Take ownership of this particular state
    go bc.update()
    return bc, nil
}

func (bc *BlockChain) getProcInterrupt() bool {
    return atomic.LoadInt32(&bc.procInterrupt) == 1
}

// GetVMConfig returns the block chain VM config.
func (bc *BlockChain) GetVMConfig() *vm.Config {
    return &bc.vmConfig
}

func (bc *BlockChain) AddConfirmedBlock(block *coreTypes.Block) {
    bc.confirmedBlockMu.Lock()
    defer bc.confirmedBlockMu.Unlock()

    bc.confirmedBlock[block.Hash] = block
    if bc.filteredConfirmedBlock[block.Position.ChainID] == nil {
        bc.filteredConfirmedBlock[block.Position.ChainID] = make(map[coreCommon.Hash]*coreTypes.Block)
    }
    bc.filteredConfirmedBlock[block.Position.ChainID][block.Hash] = block
}

func (bc *BlockChain) RemoveConfirmedBlock(hash coreCommon.Hash) {
    bc.confirmedBlockMu.Lock()
    defer bc.confirmedBlockMu.Unlock()

    block := bc.confirmedBlock[hash]
    delete(bc.filteredConfirmedBlock[block.Position.ChainID], block.Hash)
    delete(bc.confirmedBlock, block.Hash)

    if len(bc.filteredConfirmedBlock[block.Position.ChainID]) == 0 {
        bc.filteredConfirmedBlock[block.Position.ChainID] = nil
    }
}

func (bc *BlockChain) GetConfirmedBlockByHash(hash coreCommon.Hash) *coreTypes.Block {
    return bc.confirmedBlock[hash]
}

func (bc *BlockChain) GetNonceInConfirmedBlock(chainID uint32, address common.Address) (uint64, bool, error) {
    var nonce uint64
    var init bool
    for _, block := range bc.filteredConfirmedBlock[chainID] {
        var transactions types.Transactions
        err := rlp.Decode(bytes.NewReader(block.Payload), &transactions)
        if err != nil {
            return 0, init, err
        }

        for _, tx := range transactions {
            msg, err := tx.AsMessage(types.MakeSigner(bc.chainConfig, new(big.Int)))
            if err != nil {
                return 0, init, err
            }

            if msg.From() == address && (tx.Nonce() > nonce || !init) {
                if !init {
                    init = true
                }
                nonce = tx.Nonce()
            }
        }
    }
    return nonce, init, nil
}

// loadLastState loads the last known chain state from the database. This method
// assumes that the chain manager mutex is held.
func (bc *BlockChain) loadLastState() error {
    // Restore the last known head block
    head := rawdb.ReadHeadBlockHash(bc.db)
    if head == (common.Hash{}) {
        // Corrupt or empty database, init from scratch
        log.Warn("Empty database, resetting chain")
        return bc.Reset()
    }
    // Make sure the entire head block is available
    currentBlock := bc.GetBlockByHash(head)
    if currentBlock == nil {
        // Corrupt or empty database, init from scratch
        log.Warn("Head block missing, resetting chain", "hash", head)
        return bc.Reset()
    }
    // Make sure the state associated with the block is available
    if _, err := state.New(currentBlock.Root(), bc.stateCache); err != nil {
        // Dangling block without a state associated, init from scratch
        log.Warn("Head state missing, repairing chain", "number", currentBlock.Number(), "hash", currentBlock.Hash())
        if err := bc.repair(&currentBlock); err != nil {
            return err
        }
    }
    // Everything seems to be fine, set as the head block
    bc.currentBlock.Store(currentBlock)

    // Restore the last known head header
    currentHeader := currentBlock.Header()
    if head := rawdb.ReadHeadHeaderHash(bc.db); head != (common.Hash{}) {
        if header := bc.GetHeaderByHash(head); header != nil {
            currentHeader = header
        }
    }
    bc.hc.SetCurrentHeader(currentHeader)

    // Restore the last known head fast block
    bc.currentFastBlock.Store(currentBlock)
    if head := rawdb.ReadHeadFastBlockHash(bc.db); head != (common.Hash{}) {
        if block := bc.GetBlockByHash(head); block != nil {
            bc.currentFastBlock.Store(block)
        }
    }

    // Issue a status log for the user
    currentFastBlock := bc.CurrentFastBlock()

    headerTd := bc.GetTd(currentHeader.Hash(), currentHeader.Number.Uint64())
    blockTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64())
    fastTd := bc.GetTd(currentFastBlock.Hash(), currentFastBlock.NumberU64())

    log.Info("Loaded most recent local header", "number", currentHeader.Number, "hash", currentHeader.Hash(), "td", headerTd, "age", common.PrettyAge(time.Unix(int64(currentHeader.Time), 0)))
    log.Info("Loaded most recent local full block", "number", currentBlock.Number(), "hash", currentBlock.Hash(), "td", blockTd, "age", common.PrettyAge(time.Unix(int64(currentBlock.Time()), 0)))
    log.Info("Loaded most recent local fast block", "number", currentFastBlock.Number(), "hash", currentFastBlock.Hash(), "td", fastTd, "age", common.PrettyAge(time.Unix(int64(currentFastBlock.Time()), 0)))

    return nil
}

// SetHead rewinds the local chain to a new head. In the case of headers, everything
// above the new head will be deleted and the new one set. In the case of blocks
// though, the head may be further rewound if block bodies are missing (non-archive
// nodes after a fast sync).
func (bc *BlockChain) SetHead(head uint64) error {
    log.Warn("Rewinding blockchain", "target", head)

    bc.mu.Lock()
    defer bc.mu.Unlock()

    // Rewind the header chain, deleting all block bodies until then
    delFn := func(db rawdb.DatabaseDeleter, hash common.Hash, num uint64) {
        rawdb.DeleteBody(db, hash, num)
    }
    bc.hc.SetHead(head, delFn)
    currentHeader := bc.hc.CurrentHeader()

    // Clear out any stale content from the caches
    bc.bodyCache.Purge()
    bc.bodyRLPCache.Purge()
    bc.receiptsCache.Purge()
    bc.blockCache.Purge()
    bc.futureBlocks.Purge()

    // Rewind the block chain, ensuring we don't end up with a stateless head block
    if currentBlock := bc.CurrentBlock(); currentBlock != nil && currentHeader.Number.Uint64() < currentBlock.NumberU64() {
        bc.currentBlock.Store(bc.GetBlock(currentHeader.Hash(), currentHeader.Number.Uint64()))
    }
    if currentBlock := bc.CurrentBlock(); currentBlock != nil {
        if _, err := state.New(currentBlock.Root(), bc.stateCache); err != nil {
            // Rewound state missing, rolled back to before pivot, reset to genesis
            bc.currentBlock.Store(bc.genesisBlock)
        }
    }
    // Rewind the fast block in a simpleton way to the target head
    if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock != nil && currentHeader.Number.Uint64() < currentFastBlock.NumberU64() {
        bc.currentFastBlock.Store(bc.GetBlock(currentHeader.Hash(), currentHeader.Number.Uint64()))
    }
    // If either blocks reached nil, reset to the genesis state
    if currentBlock := bc.CurrentBlock(); currentBlock == nil {
        bc.currentBlock.Store(bc.genesisBlock)
    }
    if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock == nil {
        bc.currentFastBlock.Store(bc.genesisBlock)
    }
    currentBlock := bc.CurrentBlock()
    currentFastBlock := bc.CurrentFastBlock()

    rawdb.WriteHeadBlockHash(bc.db, currentBlock.Hash())
    rawdb.WriteHeadFastBlockHash(bc.db, currentFastBlock.Hash())

    return bc.loadLastState()
}

// FastSyncCommitHead sets the current head block to the one defined by the hash
// irrelevant what the chain contents were prior.
func (bc *BlockChain) FastSyncCommitHead(hash common.Hash) error {
    // Make sure that both the block as well at its state trie exists
    block := bc.GetBlockByHash(hash)
    if block == nil {
        return fmt.Errorf("non existent block [%x…]", hash[:4])
    }
    if _, err := trie.NewSecure(block.Root(), bc.stateCache.TrieDB(), 0); err != nil {
        return err
    }
    // If all checks out, manually set the head block
    bc.mu.Lock()
    bc.currentBlock.Store(block)
    bc.mu.Unlock()

    log.Info("Committed new head block", "number", block.Number(), "hash", hash)
    return nil
}

// GasLimit returns the gas limit of the current HEAD block.
func (bc *BlockChain) GasLimit() uint64 {
    return bc.CurrentBlock().GasLimit()
}

// CurrentBlock retrieves the current head block of the canonical chain. The
// block is retrieved from the blockchain's internal cache.
func (bc *BlockChain) CurrentBlock() *types.Block {
    return bc.currentBlock.Load().(*types.Block)
}

// CurrentFastBlock retrieves the current fast-sync head block of the canonical
// chain. The block is retrieved from the blockchain's internal cache.
func (bc *BlockChain) CurrentFastBlock() *types.Block {
    return bc.currentFastBlock.Load().(*types.Block)
}

// SetProcessor sets the processor required for making state modifications.
func (bc *BlockChain) SetProcessor(processor Processor) {
    bc.procmu.Lock()
    defer bc.procmu.Unlock()
    bc.processor = processor
}

// SetValidator sets the validator which is used to validate incoming blocks.
func (bc *BlockChain) SetValidator(validator Validator) {
    bc.procmu.Lock()
    defer bc.procmu.Unlock()
    bc.validator = validator
}

// Validator returns the current validator.
func (bc *BlockChain) Validator() Validator {
    bc.procmu.RLock()
    defer bc.procmu.RUnlock()
    return bc.validator
}

// Processor returns the current processor.
func (bc *BlockChain) Processor() Processor {
    bc.procmu.RLock()
    defer bc.procmu.RUnlock()
    return bc.processor
}

// State returns a new mutable state based on the current HEAD block.
func (bc *BlockChain) State() (*state.StateDB, error) {
    return bc.StateAt(bc.CurrentBlock().Root())
}

// StateAt returns a new mutable state based on a particular point in time.
func (bc *BlockChain) StateAt(root common.Hash) (*state.StateDB, error) {
    return state.New(root, bc.stateCache)
}

// StateCache returns the caching database underpinning the blockchain instance.
func (bc *BlockChain) StateCache() state.Database {
    return bc.stateCache
}

// Reset purges the entire blockchain, restoring it to its genesis state.
func (bc *BlockChain) Reset() error {
    return bc.ResetWithGenesisBlock(bc.genesisBlock)
}

// ResetWithGenesisBlock purges the entire blockchain, restoring it to the
// specified genesis state.
func (bc *BlockChain) ResetWithGenesisBlock(genesis *types.Block) error {
    // Dump the entire block chain and purge the caches
    if err := bc.SetHead(0); err != nil {
        return err
    }
    bc.mu.Lock()
    defer bc.mu.Unlock()

    // Prepare the genesis block and reinitialise the chain
    if err := bc.hc.WriteTd(genesis.Hash(), genesis.NumberU64(), genesis.Difficulty()); err != nil {
        log.Crit("Failed to write genesis block TD", "err", err)
    }
    rawdb.WriteBlock(bc.db, genesis)

    bc.genesisBlock = genesis
    bc.insert(bc.genesisBlock)
    bc.currentBlock.Store(bc.genesisBlock)
    bc.hc.SetGenesis(bc.genesisBlock.Header())
    bc.hc.SetCurrentHeader(bc.genesisBlock.Header())
    bc.currentFastBlock.Store(bc.genesisBlock)

    return nil
}

// repair tries to repair the current blockchain by rolling back the current block
// until one with associated state is found. This is needed to fix incomplete db
// writes caused either by crashes/power outages, or simply non-committed tries.
//
// This method only rolls back the current block. The current header and current
// fast block are left intact.
func (bc *BlockChain) repair(head **types.Block) error {
    for {
        // Abort if we've rewound to a head block that does have associated state
        if _, err := state.New((*head).Root(), bc.stateCache); err == nil {
            log.Info("Rewound blockchain to past state", "number", (*head).Number(), "hash", (*head).Hash())
            return nil
        }
        // Otherwise rewind one block and recheck state availability there
        block := bc.GetBlock((*head).ParentHash(), (*head).NumberU64()-1)
        if block == nil {
            return fmt.Errorf("missing block %d [%x]", (*head).NumberU64()-1, (*head).ParentHash())
        }
        (*head) = block
    }
}

// Export writes the active chain to the given writer.
func (bc *BlockChain) Export(w io.Writer) error {
    return bc.ExportN(w, uint64(0), bc.CurrentBlock().NumberU64())
}

// ExportN writes a subset of the active chain to the given writer.
func (bc *BlockChain) ExportN(w io.Writer, first uint64, last uint64) error {
    bc.mu.RLock()
    defer bc.mu.RUnlock()

    if first > last {
        return fmt.Errorf("export failed: first (%d) is greater than last (%d)", first, last)
    }
    log.Info("Exporting batch of blocks", "count", last-first+1)

    start, reported := time.Now(), time.Now()
    for nr := first; nr <= last; nr++ {
        block := bc.GetBlockByNumber(nr)
        if block == nil {
            return fmt.Errorf("export failed on #%d: not found", nr)
        }
        if err := block.EncodeRLP(w); err != nil {
            return err
        }
        if time.Since(reported) >= statsReportLimit {
            log.Info("Exporting blocks", "exported", block.NumberU64()-first, "elapsed", common.PrettyDuration(time.Since(start)))
            reported = time.Now()
        }
    }

    return nil
}

// insert injects a new head block into the current block chain. This method
// assumes that the block is indeed a true head. It will also reset the head
// header and the head fast sync block to this very same block if they are older
// or if they are on a different side chain.
//
// Note, this function assumes that the `mu` mutex is held!
func (bc *BlockChain) insert(block *types.Block) {
    // If the block is on a side chain or an unknown one, force other heads onto it too
    updateHeads := rawdb.ReadCanonicalHash(bc.db, block.NumberU64()) != block.Hash()

    // Add the block to the canonical chain number scheme and mark as the head
    rawdb.WriteCanonicalHash(bc.db, block.Hash(), block.NumberU64())
    rawdb.WriteHeadBlockHash(bc.db, block.Hash())

    bc.currentBlock.Store(block)

    // If the block is better than our head or is on a different chain, force update heads
    if updateHeads {
        bc.hc.SetCurrentHeader(block.Header())
        rawdb.WriteHeadFastBlockHash(bc.db, block.Hash())

        bc.currentFastBlock.Store(block)
    }
}

// Genesis retrieves the chain's genesis block.
func (bc *BlockChain) Genesis() *types.Block {
    return bc.genesisBlock
}

// GetBody retrieves a block body (transactions and uncles) from the database by
// hash, caching it if found.
func (bc *BlockChain) GetBody(hash common.Hash) *types.Body {
    // Short circuit if the body's already in the cache, retrieve otherwise
    if cached, ok := bc.bodyCache.Get(hash); ok {
        body := cached.(*types.Body)
        return body
    }
    number := bc.hc.GetBlockNumber(hash)
    if number == nil {
        return nil
    }
    body := rawdb.ReadBody(bc.db, hash, *number)
    if body == nil {
        return nil
    }
    // Cache the found body for next time and return
    bc.bodyCache.Add(hash, body)
    return body
}

// GetBodyRLP retrieves a block body in RLP encoding from the database by hash,
// caching it if found.
func (bc *BlockChain) GetBodyRLP(hash common.Hash) rlp.RawValue {
    // Short circuit if the body's already in the cache, retrieve otherwise
    if cached, ok := bc.bodyRLPCache.Get(hash); ok {
        return cached.(rlp.RawValue)
    }
    number := bc.hc.GetBlockNumber(hash)
    if number == nil {
        return nil
    }
    body := rawdb.ReadBodyRLP(bc.db, hash, *number)
    if len(body) == 0 {
        return nil
    }
    // Cache the found body for next time and return
    bc.bodyRLPCache.Add(hash, body)
    return body
}

// HasBlock checks if a block is fully present in the database or not.
func (bc *BlockChain) HasBlock(hash common.Hash, number uint64) bool {
    if bc.blockCache.Contains(hash) {
        return true
    }
    return rawdb.HasBody(bc.db, hash, number)
}

// HasFastBlock checks if a fast block is fully present in the database or not.
func (bc *BlockChain) HasFastBlock(hash common.Hash, number uint64) bool {
    if !bc.HasBlock(hash, number) {
        return false
    }
    if bc.receiptsCache.Contains(hash) {
        return true
    }
    return rawdb.HasReceipts(bc.db, hash, number)
}

// HasState checks if state trie is fully present in the database or not.
func (bc *BlockChain) HasState(hash common.Hash) bool {
    _, err := bc.stateCache.OpenTrie(hash)
    return err == nil
}

// HasBlockAndState checks if a block and associated state trie is fully present
// in the database or not, caching it if present.
func (bc *BlockChain) HasBlockAndState(hash common.Hash, number uint64) bool {
    // Check first that the block itself is known
    block := bc.GetBlock(hash, number)
    if block == nil {
        return false
    }
    return bc.HasState(block.Root())
}

// GetBlock retrieves a block from the database by hash and number,
// caching it if found.
func (bc *BlockChain) GetBlock(hash common.Hash, number uint64) *types.Block {
    // Short circuit if the block's already in the cache, retrieve otherwise
    if block, ok := bc.blockCache.Get(hash); ok {
        return block.(*types.Block)
    }
    block := rawdb.ReadBlock(bc.db, hash, number)
    if block == nil {
        return nil
    }
    // Cache the found block for next time and return
    bc.blockCache.Add(block.Hash(), block)
    return block
}

// GetBlockByHash retrieves a block from the database by hash, caching it if found.
func (bc *BlockChain) GetBlockByHash(hash common.Hash) *types.Block {
    number := bc.hc.GetBlockNumber(hash)
    if number == nil {
        return nil
    }
    return bc.GetBlock(hash, *number)
}

// GetBlockByNumber retrieves a block from the database by number, caching it
// (associated with its hash) if found.
func (bc *BlockChain) GetBlockByNumber(number uint64) *types.Block {
    hash := rawdb.ReadCanonicalHash(bc.db, number)
    if hash == (common.Hash{}) {
        return nil
    }
    return bc.GetBlock(hash, number)
}

// GetReceiptsByHash retrieves the receipts for all transactions in a given block.
func (bc *BlockChain) GetReceiptsByHash(hash common.Hash) types.Receipts {
    if receipts, ok := bc.receiptsCache.Get(hash); ok {
        return receipts.(types.Receipts)
    }
    number := rawdb.ReadHeaderNumber(bc.db, hash)
    if number == nil {
        return nil
    }
    receipts := rawdb.ReadReceipts(bc.db, hash, *number)
    bc.receiptsCache.Add(hash, receipts)
    return receipts
}

// GetBlocksFromHash returns the block corresponding to hash and up to n-1 ancestors.
// [deprecated by eth/62]
func (bc *BlockChain) GetBlocksFromHash(hash common.Hash, n int) (blocks []*types.Block) {
    number := bc.hc.GetBlockNumber(hash)
    if number == nil {
        return nil
    }
    for i := 0; i < n; i++ {
        block := bc.GetBlock(hash, *number)
        if block == nil {
            break
        }
        blocks = append(blocks, block)
        hash = block.ParentHash()
        *number--
    }
    return
}

// GetUnclesInChain retrieves all the uncles from a given block backwards until
// a specific distance is reached.
func (bc *BlockChain) GetUnclesInChain(block *types.Block, length int) []*types.Header {
    uncles := []*types.Header{}
    for i := 0; block != nil && i < length; i++ {
        uncles = append(uncles, block.Uncles()...)
        block = bc.GetBlock(block.ParentHash(), block.NumberU64()-1)
    }
    return uncles
}

// TrieNode retrieves a blob of data associated with a trie node (or code hash)
// either from ephemeral in-memory cache, or from persistent storage.
func (bc *BlockChain) TrieNode(hash common.Hash) ([]byte, error) {
    return bc.stateCache.TrieDB().Node(hash)
}

// Stop stops the blockchain service. If any imports are currently in progress
// it will abort them using the procInterrupt.
func (bc *BlockChain) Stop() {
    if !atomic.CompareAndSwapInt32(&bc.running, 0, 1) {
        return
    }
    // Unsubscribe all subscriptions registered from blockchain
    bc.scope.Close()
    close(bc.quit)
    atomic.StoreInt32(&bc.procInterrupt, 1)

    bc.wg.Wait()

    // Ensure the state of a recent block is also stored to disk before exiting.
    // We're writing three different states to catch different restart scenarios:
    //  - HEAD:     So we don't need to reprocess any blocks in the general case
    //  - HEAD-1:   So we don't do large reorgs if our HEAD becomes an uncle
    //  - HEAD-127: So we have a hard limit on the number of blocks reexecuted
    if !bc.cacheConfig.Disabled {
        triedb := bc.stateCache.TrieDB()

        for _, offset := range []uint64{0, 1, triesInMemory - 1} {
            if number := bc.CurrentBlock().NumberU64(); number > offset {
                recent := bc.GetBlockByNumber(number - offset)

                log.Info("Writing cached state to disk", "block", recent.Number(), "hash", recent.Hash(), "root", recent.Root())
                if err := triedb.Commit(recent.Root(), true); err != nil {
                    log.Error("Failed to commit recent state trie", "err", err)
                }
            }
        }
        for !bc.triegc.Empty() {
            triedb.Dereference(bc.triegc.PopItem().(common.Hash))
        }
        if size, _ := triedb.Size(); size != 0 {
            log.Error("Dangling trie nodes after full cleanup")
        }
    }
    log.Info("Blockchain manager stopped")
}

func (bc *BlockChain) procFutureBlocks() {
    blocks := make([]*types.Block, 0, bc.futureBlocks.Len())
    for _, hash := range bc.futureBlocks.Keys() {
        if block, exist := bc.futureBlocks.Peek(hash); exist {
            blocks = append(blocks, block.(*types.Block))
        }
    }
    if len(blocks) > 0 {
        types.BlockBy(types.Number).Sort(blocks)

        // Insert one by one as chain insertion needs contiguous ancestry between blocks
        for i := range blocks {
            bc.InsertChain(blocks[i : i+1])
        }
    }
}

// WriteStatus status of write
type WriteStatus byte

const (
    NonStatTy WriteStatus = iota
    CanonStatTy
    SideStatTy
)

// Rollback is designed to remove a chain of links from the database that aren't
// certain enough to be valid.
func (bc *BlockChain) Rollback(chain []common.Hash) {
    bc.mu.Lock()
    defer bc.mu.Unlock()

    for i := len(chain) - 1; i >= 0; i-- {
        hash := chain[i]

        currentHeader := bc.hc.CurrentHeader()
        if currentHeader.Hash() == hash {
            bc.hc.SetCurrentHeader(bc.GetHeader(currentHeader.ParentHash, currentHeader.Number.Uint64()-1))
        }
        if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock.Hash() == hash {
            newFastBlock := bc.GetBlock(currentFastBlock.ParentHash(), currentFastBlock.NumberU64()-1)
            bc.currentFastBlock.Store(newFastBlock)
            rawdb.WriteHeadFastBlockHash(bc.db, newFastBlock.Hash())
        }
        if currentBlock := bc.CurrentBlock(); currentBlock.Hash() == hash {
            newBlock := bc.GetBlock(currentBlock.ParentHash(), currentBlock.NumberU64()-1)
            bc.currentBlock.Store(newBlock)
            rawdb.WriteHeadBlockHash(bc.db, newBlock.Hash())
        }
    }
}

// SetReceiptsData computes all the non-consensus fields of the receipts
func SetReceiptsData(config *params.ChainConfig, block *types.Block, receipts types.Receipts) error {
    signer := types.MakeSigner(config, block.Number())

    transactions, logIndex := block.Transactions(), uint(0)
    if len(transactions) != len(receipts) {
        return errors.New("transaction and receipt count mismatch")
    }

    for j := 0; j < len(receipts); j++ {
        // The transaction hash can be retrieved from the transaction itself
        receipts[j].TxHash = transactions[j].Hash()

        // The contract address can be derived from the transaction itself
        if transactions[j].To() == nil {
            // Deriving the signer is expensive, only do if it's actually needed
            from, _ := types.Sender(signer, transactions[j])
            receipts[j].ContractAddress = crypto.CreateAddress(from, transactions[j].Nonce())
        }
        // The used gas can be calculated based on previous receipts
        if j == 0 {
            receipts[j].GasUsed = receipts[j].CumulativeGasUsed
        } else {
            receipts[j].GasUsed = receipts[j].CumulativeGasUsed - receipts[j-1].CumulativeGasUsed
        }
        // The derived log fields can simply be set from the block and transaction
        for k := 0; k < len(receipts[j].Logs); k++ {
            receipts[j].Logs[k].BlockNumber = block.NumberU64()
            receipts[j].Logs[k].BlockHash = block.Hash()
            receipts[j].Logs[k].TxHash = receipts[j].TxHash
            receipts[j].Logs[k].TxIndex = uint(j)
            receipts[j].Logs[k].Index = logIndex
            logIndex++
        }
    }
    return nil
}

// InsertReceiptChain attempts to complete an already existing header chain with
// transaction and receipt data.
func (bc *BlockChain) InsertReceiptChain(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) {
    bc.wg.Add(1)
    defer bc.wg.Done()

    // Do a sanity check that the provided chain is actually ordered and linked
    for i := 1; i < len(blockChain); i++ {
        if blockChain[i].NumberU64() != blockChain[i-1].NumberU64()+1 || blockChain[i].ParentHash() != blockChain[i-1].Hash() {
            log.Error("Non contiguous receipt insert", "number", blockChain[i].Number(), "hash", blockChain[i].Hash(), "parent", blockChain[i].ParentHash(),
                "prevnumber", blockChain[i-1].Number(), "prevhash", blockChain[i-1].Hash())
            return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, blockChain[i-1].NumberU64(),
                blockChain[i-1].Hash().Bytes()[:4], i, blockChain[i].NumberU64(), blockChain[i].Hash().Bytes()[:4], blockChain[i].ParentHash().Bytes()[:4])
        }
    }

    var (
        stats = struct{ processed, ignored int32 }{}
        start = time.Now()
        bytes = 0
        batch = bc.db.NewBatch()
    )
    for i, block := range blockChain {
        receipts := receiptChain[i]
        // Short circuit insertion if shutting down or processing failed
        if atomic.LoadInt32(&bc.procInterrupt) == 1 {
            return 0, nil
        }
        // Short circuit if the owner header is unknown
        if !bc.HasHeader(block.Hash(), block.NumberU64()) {
            return i, fmt.Errorf("containing header #%d [%x…] unknown", block.Number(), block.Hash().Bytes()[:4])
        }
        // Skip if the entire data is already known
        if bc.HasBlock(block.Hash(), block.NumberU64()) {
            stats.ignored++
            continue
        }
        // Compute all the non-consensus fields of the receipts
        if err := SetReceiptsData(bc.chainConfig, block, receipts); err != nil {
            return i, fmt.Errorf("failed to set receipts data: %v", err)
        }
        // Write all the data out into the database
        rawdb.WriteBody(batch, block.Hash(), block.NumberU64(), block.Body())
        rawdb.WriteReceipts(batch, block.Hash(), block.NumberU64(), receipts)
        rawdb.WriteTxLookupEntries(batch, block)

        stats.processed++

        if batch.ValueSize() >= ethdb.IdealBatchSize {
            if err := batch.Write(); err != nil {
                return 0, err
            }
            bytes += batch.ValueSize()
            batch.Reset()
        }
    }
    if batch.ValueSize() > 0 {
        bytes += batch.ValueSize()
        if err := batch.Write(); err != nil {
            return 0, err
        }
    }

    // Update the head fast sync block if better
    bc.mu.Lock()
    head := blockChain[len(blockChain)-1]
    if td := bc.GetTd(head.Hash(), head.NumberU64()); td != nil { // Rewind may have occurred, skip in that case
        currentFastBlock := bc.CurrentFastBlock()
        if bc.GetTd(currentFastBlock.Hash(), currentFastBlock.NumberU64()).Cmp(td) < 0 {
            rawdb.WriteHeadFastBlockHash(bc.db, head.Hash())
            bc.currentFastBlock.Store(head)
        }
    }
    bc.mu.Unlock()

    context := []interface{}{
        "count", stats.processed, "elapsed", common.PrettyDuration(time.Since(start)),
        "number", head.Number(), "hash", head.Hash(), "age", common.PrettyAge(time.Unix(int64(head.Time()), 0)),
        "size", common.StorageSize(bytes),
    }
    if stats.ignored > 0 {
        context = append(context, []interface{}{"ignored", stats.ignored}...)
    }
    log.Info("Imported new block receipts", context...)

    return 0, nil
}

var lastWrite uint64

// WriteBlockWithoutState writes only the block and its metadata to the database,
// but does not write any state. This is used to construct competing side forks
// up to the point where they exceed the canonical total difficulty.
func (bc *BlockChain) WriteBlockWithoutState(block *types.Block, td *big.Int) (err error) {
    bc.wg.Add(1)
    defer bc.wg.Done()

    if err := bc.hc.WriteTd(block.Hash(), block.NumberU64(), td); err != nil {
        return err
    }
    rawdb.WriteBlock(bc.db, block)

    return nil
}

// WriteBlockWithState writes the block and all associated state to the database.
func (bc *BlockChain) WriteBlockWithState(block *types.Block, receipts []*types.Receipt, state *state.StateDB) (status WriteStatus, err error) {
    bc.wg.Add(1)
    defer bc.wg.Done()

    // Calculate the total difficulty of the block
    ptd := bc.GetTd(block.ParentHash(), block.NumberU64()-1)
    if ptd == nil {
        return NonStatTy, consensus.ErrUnknownAncestor
    }
    // Make sure no inconsistent state is leaked during insertion
    bc.mu.Lock()
    defer bc.mu.Unlock()

    currentBlock := bc.CurrentBlock()
    localTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64())
    externTd := new(big.Int).Add(block.Difficulty(), ptd)

    // Irrelevant of the canonical status, write the block itself to the database
    if err := bc.hc.WriteTd(block.Hash(), block.NumberU64(), externTd); err != nil {
        return NonStatTy, err
    }
    rawdb.WriteBlock(bc.db, block)

    root, err := state.Commit(bc.chainConfig.IsEIP158(block.Number()))
    if err != nil {
        return NonStatTy, err
    }
    triedb := bc.stateCache.TrieDB()

    // If we're running an archive node, always flush
    if bc.cacheConfig.Disabled {
        if err := triedb.Commit(root, false); err != nil {
            return NonStatTy, err
        }
    } else {
        // Full but not archive node, do proper garbage collection
        triedb.Reference(root, common.Hash{}) // metadata reference to keep trie alive
        bc.triegc.Push(root, -int64(block.NumberU64()))

        if current := block.NumberU64(); current > triesInMemory {
            // If we exceeded our memory allowance, flush matured singleton nodes to disk
            var (
                nodes, imgs = triedb.Size()
                limit       = common.StorageSize(bc.cacheConfig.TrieDirtyLimit) * 1024 * 1024
            )
            if nodes > limit || imgs > 4*1024*1024 {
                triedb.Cap(limit - ethdb.IdealBatchSize)
            }
            // Find the next state trie we need to commit
            chosen := current - triesInMemory

            // If we exceeded out time allowance, flush an entire trie to disk
            if bc.gcproc > bc.cacheConfig.TrieTimeLimit {
                // If the header is missing (canonical chain behind), we're reorging a low
                // diff sidechain. Suspend committing until this operation is completed.
                header := bc.GetHeaderByNumber(chosen)
                if header == nil {
                    log.Warn("Reorg in progress, trie commit postponed", "number", chosen)
                } else {
                    // If we're exceeding limits but haven't reached a large enough memory gap,
                    // warn the user that the system is becoming unstable.
                    if chosen < lastWrite+triesInMemory && bc.gcproc >= 2*bc.cacheConfig.TrieTimeLimit {
                        log.Info("State in memory for too long, committing", "time", bc.gcproc, "allowance", bc.cacheConfig.TrieTimeLimit, "optimum", float64(chosen-lastWrite)/triesInMemory)
                    }
                    // Flush an entire trie and restart the counters
                    triedb.Commit(header.Root, true)
                    lastWrite = chosen
                    bc.gcproc = 0
                }
            }
            // Garbage collect anything below our required write retention
            for !bc.triegc.Empty() {
                root, number := bc.triegc.Pop()
                if uint64(-number) > chosen {
                    bc.triegc.Push(root, number)
                    break
                }
                triedb.Dereference(root.(common.Hash))
            }
        }
    }

    // Write other block data using a batch.
    batch := bc.db.NewBatch()
    rawdb.WriteReceipts(batch, block.Hash(), block.NumberU64(), receipts)

    // If the total difficulty is higher than our known, add it to the canonical chain
    // Second clause in the if statement reduces the vulnerability to selfish mining.
    // Please refer to http://www.cs.cornell.edu/~ie53/publications/btcProcFC.pdf
    reorg := externTd.Cmp(localTd) > 0
    currentBlock = bc.CurrentBlock()
    if !reorg && externTd.Cmp(localTd) == 0 {
        // Split same-difficulty blocks by number, then preferentially select
        // the block generated by the local miner as the canonical block.
        if block.NumberU64() < currentBlock.NumberU64() {
            reorg = true
        } else if block.NumberU64() == currentBlock.NumberU64() {
            var currentPreserve, blockPreserve bool
            if bc.shouldPreserve != nil {
                currentPreserve, blockPreserve = bc.shouldPreserve(currentBlock), bc.shouldPreserve(block)
            }
            reorg = !currentPreserve && (blockPreserve || mrand.Float64() < 0.5)
        }
    }
    if reorg {
        // Reorganise the chain if the parent is not the head block
        if block.ParentHash() != currentBlock.Hash() {
            if err := bc.reorg(currentBlock, block); err != nil {
                return NonStatTy, err
            }
        }
        // Write the positional metadata for transaction/receipt lookups and preimages
        rawdb.WriteTxLookupEntries(batch, block)
        rawdb.WritePreimages(batch, state.Preimages())

        status = CanonStatTy
    } else {
        status = SideStatTy
    }
    if err := batch.Write(); err != nil {
        return NonStatTy, err
    }

    // Set new head.
    if status == CanonStatTy {
        bc.insert(block)
    }
    bc.futureBlocks.Remove(block.Hash())
    return status, nil
}

// addFutureBlock checks if the block is within the max allowed window to get
// accepted for future processing, and returns an error if the block is too far
// ahead and was not added.
func (bc *BlockChain) addFutureBlock(block *types.Block) error {
    max := uint64(time.Now().Unix() + maxTimeFutureBlocks)
    if block.Time() > max {
        return fmt.Errorf("future block timestamp %v > allowed %v", block.Time(), max)
    }
    bc.futureBlocks.Add(block.Hash(), block)
    return nil
}

// InsertChain attempts to insert the given batch of blocks in to the canonical
// chain or, otherwise, create a fork. If an error is returned it will return
// the index number of the failing block as well an error describing what went
// wrong.
//
// After insertion is done, all accumulated events will be fired.
func (bc *BlockChain) InsertChain(chain types.Blocks) (int, error) {
    // Sanity check that we have something meaningful to import
    if len(chain) == 0 {
        return 0, nil
    }
    // Do a sanity check that the provided chain is actually ordered and linked
    for i := 1; i < len(chain); i++ {
        if chain[i].NumberU64() != chain[i-1].NumberU64()+1 || chain[i].ParentHash() != chain[i-1].Hash() {
            // Chain broke ancestry, log a message (programming error) and skip insertion
            log.Error("Non contiguous block insert", "number", chain[i].Number(), "hash", chain[i].Hash(),
                "parent", chain[i].ParentHash(), "prevnumber", chain[i-1].Number(), "prevhash", chain[i-1].Hash())

            return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, chain[i-1].NumberU64(),
                chain[i-1].Hash().Bytes()[:4], i, chain[i].NumberU64(), chain[i].Hash().Bytes()[:4], chain[i].ParentHash().Bytes()[:4])
        }
    }
    // Pre-checks passed, start the full block imports
    bc.wg.Add(1)
    bc.chainmu.Lock()
    n, events, logs, err := bc.insertChain(chain, true)
    bc.chainmu.Unlock()
    bc.wg.Done()

    bc.PostChainEvents(events, logs)
    return n, err
}

// insertChain is the internal implementation of insertChain, which assumes that
// 1) chains are contiguous, and 2) The chain mutex is held.
//
// This method is split out so that import batches that require re-injecting
// historical blocks can do so without releasing the lock, which could lead to
// racey behaviour. If a sidechain import is in progress, and the historic state
// is imported, but then new canon-head is added before the actual sidechain
// completes, then the historic state could be pruned again
func (bc *BlockChain) insertChain(chain types.Blocks, verifySeals bool) (int, []interface{}, []*types.Log, error) {
    // If the chain is terminating, don't even bother starting u
    if atomic.LoadInt32(&bc.procInterrupt) == 1 {
        return 0, nil, nil, nil
    }
    // Start a parallel signature recovery (signer will fluke on fork transition, minimal perf loss)
    senderCacher.recoverFromBlocks(types.MakeSigner(bc.chainConfig, chain[0].Number()), chain)

    // A queued approach to delivering events. This is generally
    // faster than direct delivery and requires much less mutex
    // acquiring.
    var (
        stats         = insertStats{startTime: mclock.Now()}
        events        = make([]interface{}, 0, len(chain))
        lastCanon     *types.Block
        coalescedLogs []*types.Log
    )
    // Start the parallel header verifier
    headers := make([]*types.Header, len(chain))
    seals := make([]bool, len(chain))

    for i, block := range chain {
        headers[i] = block.Header()
        seals[i] = verifySeals
    }
    abort, results := bc.engine.VerifyHeaders(bc, headers, seals)
    defer close(abort)

    // Peek the error for the first block to decide the directing import logic
    it := newInsertIterator(chain, results, bc.Validator())

    block, err := it.next()
    switch {
    // First block is pruned, insert as sidechain and reorg only if TD grows enough
    case err == consensus.ErrPrunedAncestor:
        return bc.insertSidechain(block, it)

    // First block is future, shove it (and all children) to the future queue (unknown ancestor)
    case err == consensus.ErrFutureBlock || (err == consensus.ErrUnknownAncestor && bc.futureBlocks.Contains(it.first().ParentHash())):
        for block != nil && (it.index == 0 || err == consensus.ErrUnknownAncestor) {
            if err := bc.addFutureBlock(block); err != nil {
                return it.index, events, coalescedLogs, err
            }
            block, err = it.next()
        }
        stats.queued += it.processed()
        stats.ignored += it.remaining()

        // If there are any still remaining, mark as ignored
        return it.index, events, coalescedLogs, err

    // First block (and state) is known
    //   1. We did a roll-back, and should now do a re-import
    //   2. The block is stored as a sidechain, and is lying about it's stateroot, and passes a stateroot
    //      from the canonical chain, which has not been verified.
    case err == ErrKnownBlock:
        // Skip all known blocks that behind us
        current := bc.CurrentBlock().NumberU64()

        for block != nil && err == ErrKnownBlock && current >= block.NumberU64() {
            stats.ignored++
            block, err = it.next()
        }
        // Falls through to the block import

    // Some other error occurred, abort
    case err != nil:
        stats.ignored += len(it.chain)
        bc.reportBlock(block, nil, err)
        return it.index, events, coalescedLogs, err
    }
    // No validation errors for the first block (or chain prefix skipped)
    for ; block != nil && err == nil; block, err = it.next() {
        // If the chain is terminating, stop processing blocks
        if atomic.LoadInt32(&bc.procInterrupt) == 1 {
            log.Debug("Premature abort during blocks processing")
            break
        }
        // If the header is a banned one, straight out abort
        if BadHashes[block.Hash()] {
            bc.reportBlock(block, nil, ErrBlacklistedHash)
            return it.index, events, coalescedLogs, ErrBlacklistedHash
        }
        // Retrieve the parent block and it's state to execute on top
        start := time.Now()

        parent := it.previous()
        if parent == nil {
            parent = bc.GetBlock(block.ParentHash(), block.NumberU64()-1)
        }
        state, err := state.New(parent.Root(), bc.stateCache)
        if err != nil {
            return it.index, events, coalescedLogs, err
        }
        // Process block using the parent state as reference point.
        t0 := time.Now()
        receipts, logs, usedGas, err := bc.processor.Process(block, state, bc.vmConfig)
        t1 := time.Now()
        if err != nil {
            bc.reportBlock(block, receipts, err)
            return it.index, events, coalescedLogs, err
        }
        // Validate the state using the default validator
        if err := bc.Validator().ValidateState(block, parent, state, receipts, usedGas); err != nil {
            bc.reportBlock(block, receipts, err)
            return it.index, events, coalescedLogs, err
        }
        t2 := time.Now()
        proctime := time.Since(start)

        // Write the block to the chain and get the status.
        status, err := bc.WriteBlockWithState(block, receipts, state)
        t3 := time.Now()
        if err != nil {
            return it.index, events, coalescedLogs, err
        }
        blockInsertTimer.UpdateSince(start)
        blockExecutionTimer.Update(t1.Sub(t0))
        blockValidationTimer.Update(t2.Sub(t1))
        blockWriteTimer.Update(t3.Sub(t2))
        switch status {
        case CanonStatTy:
            log.Debug("Inserted new block", "number", block.Number(), "hash", block.Hash(),
                "uncles", len(block.Uncles()), "txs", len(block.Transactions()), "gas", block.GasUsed(),
                "elapsed", common.PrettyDuration(time.Since(start)),
                "root", block.Root())

            coalescedLogs = append(coalescedLogs, logs...)
            events = append(events, ChainEvent{block, block.Hash(), logs})
            lastCanon = block

            // Only count canonical blocks for GC processing time
            bc.gcproc += proctime

        case SideStatTy:
            log.Debug("Inserted forked block", "number", block.Number(), "hash", block.Hash(),
                "diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)),
                "txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()),
                "root", block.Root())
            events = append(events, ChainSideEvent{block})
        }
        blockInsertTimer.UpdateSince(start)
        stats.processed++
        stats.usedGas += usedGas

        cache, _ := bc.stateCache.TrieDB().Size()
        stats.report(chain, it.index, cache)
    }
    // Any blocks remaining here? The only ones we care about are the future ones
    if block != nil && err == consensus.ErrFutureBlock {
        if err := bc.addFutureBlock(block); err != nil {
            return it.index, events, coalescedLogs, err
        }
        block, err = it.next()

        for ; block != nil && err == consensus.ErrUnknownAncestor; block, err = it.next() {
            if err := bc.addFutureBlock(block); err != nil {
                return it.index, events, coalescedLogs, err
            }
            stats.queued++
        }
    }
    stats.ignored += it.remaining()

    // Append a single chain head event if we've progressed the chain
    if lastCanon != nil && bc.CurrentBlock().Hash() == lastCanon.Hash() {
        events = append(events, ChainHeadEvent{lastCanon})
    }
    return it.index, events, coalescedLogs, err
}

// insertSidechain is called when an import batch hits upon a pruned ancestor
// error, which happens when a sidechain with a sufficiently old fork-block is
// found.
//
// The method writes all (header-and-body-valid) blocks to disk, then tries to
// switch over to the new chain if the TD exceeded the current chain.
func (bc *BlockChain) insertSidechain(block *types.Block, it *insertIterator) (int, []interface{}, []*types.Log, error) {
    var (
        externTd *big.Int
        current  = bc.CurrentBlock().NumberU64()
    )
    // The first sidechain block error is already verified to be ErrPrunedAncestor.
    // Since we don't import them here, we expect ErrUnknownAncestor for the remaining
    // ones. Any other errors means that the block is invalid, and should not be written
    // to disk.
    err := consensus.ErrPrunedAncestor
    for ; block != nil && (err == consensus.ErrPrunedAncestor); block, err = it.next() {
        // Check the canonical state root for that number
        if number := block.NumberU64(); current >= number {
            if canonical := bc.GetBlockByNumber(number); canonical != nil && canonical.Root() == block.Root() {
                // This is most likely a shadow-state attack. When a fork is imported into the
                // database, and it eventually reaches a block height which is not pruned, we
                // just found that the state already exist! This means that the sidechain block
                // refers to a state which already exists in our canon chain.
                //
                // If left unchecked, we would now proceed importing the blocks, without actually
                // having verified the state of the previous blocks.
                log.Warn("Sidechain ghost-state attack detected", "number", block.NumberU64(), "sideroot", block.Root(), "canonroot", canonical.Root())

                // If someone legitimately side-mines blocks, they would still be imported as usual. However,
                // we cannot risk writing unverified blocks to disk when they obviously target the pruning
                // mechanism.
                return it.index, nil, nil, errors.New("sidechain ghost-state attack")
            }
        }
        if externTd == nil {
            externTd = bc.GetTd(block.ParentHash(), block.NumberU64()-1)
        }
        externTd = new(big.Int).Add(externTd, block.Difficulty())

        if !bc.HasBlock(block.Hash(), block.NumberU64()) {
            start := time.Now()
            if err := bc.WriteBlockWithoutState(block, externTd); err != nil {
                return it.index, nil, nil, err
            }
            log.Debug("Injected sidechain block", "number", block.Number(), "hash", block.Hash(),
                "diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)),
                "txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()),
                "root", block.Root())
        }
    }
    // At this point, we've written all sidechain blocks to database. Loop ended
    // either on some other error or all were processed. If there was some other
    // error, we can ignore the rest of those blocks.
    //
    // If the externTd was larger than our local TD, we now need to reimport the previous
    // blocks to regenerate the required state
    localTd := bc.GetTd(bc.CurrentBlock().Hash(), current)
    if localTd.Cmp(externTd) > 0 {
        log.Info("Sidechain written to disk", "start", it.first().NumberU64(), "end", it.previous().NumberU64(), "sidetd", externTd, "localtd", localTd)
        return it.index, nil, nil, err
    }
    // Gather all the sidechain hashes (full blocks may be memory heavy)
    var (
        hashes  []common.Hash
        numbers []uint64
    )
    parent := bc.GetHeader(it.previous().Hash(), it.previous().NumberU64())
    for parent != nil && !bc.HasState(parent.Root) {
        hashes = append(hashes, parent.Hash())
        numbers = append(numbers, parent.Number.Uint64())

        parent = bc.GetHeader(parent.ParentHash, parent.Number.Uint64()-1)
    }
    if parent == nil {
        return it.index, nil, nil, errors.New("missing parent")
    }
    // Import all the pruned blocks to make the state available
    var (
        blocks []*types.Block
        memory common.StorageSize
    )
    for i := len(hashes) - 1; i >= 0; i-- {
        // Append the next block to our batch
        block := bc.GetBlock(hashes[i], numbers[i])

        blocks = append(blocks, block)
        memory += block.Size()

        // If memory use grew too large, import and continue. Sadly we need to discard
        // all raised events and logs from notifications since we're too heavy on the
        // memory here.
        if len(blocks) >= 2048 || memory > 64*1024*1024 {
            log.Info("Importing heavy sidechain segment", "blocks", len(blocks), "start", blocks[0].NumberU64(), "end", block.NumberU64())
            if _, _, _, err := bc.insertChain(blocks, false); err != nil {
                return 0, nil, nil, err
            }
            blocks, memory = blocks[:0], 0

            // If the chain is terminating, stop processing blocks
            if atomic.LoadInt32(&bc.procInterrupt) == 1 {
                log.Debug("Premature abort during blocks processing")
                return 0, nil, nil, nil
            }
        }
    }
    if len(blocks) > 0 {
        log.Info("Importing sidechain segment", "start", blocks[0].NumberU64(), "end", blocks[len(blocks)-1].NumberU64())
        return bc.insertChain(blocks, false)
    }
    return 0, nil, nil, nil
}

// reorg takes two blocks, an old chain and a new chain and will reconstruct the
// blocks and inserts them to be part of the new canonical chain and accumulates
// potential missing transactions and post an event about them.
func (bc *BlockChain) reorg(oldBlock, newBlock *types.Block) error {
    var (
        newChain    types.Blocks
        oldChain    types.Blocks
        commonBlock *types.Block

        deletedTxs types.Transactions
        addedTxs   types.Transactions

        deletedLogs []*types.Log
        rebirthLogs []*types.Log

        // collectLogs collects the logs that were generated during the
        // processing of the block that corresponds with the given hash.
        // These logs are later announced as deleted or reborn
        collectLogs = func(hash common.Hash, removed bool) {
            number := bc.hc.GetBlockNumber(hash)
            if number == nil {
                return
            }
            receipts := rawdb.ReadReceipts(bc.db, hash, *number)
            for _, receipt := range receipts {
                for _, log := range receipt.Logs {
                    l := *log
                    if removed {
                        l.Removed = true
                        deletedLogs = append(deletedLogs, &l)
                    } else {
                        rebirthLogs = append(rebirthLogs, &l)
                    }
                }
            }
        }
    )
    // Reduce the longer chain to the same number as the shorter one
    if oldBlock.NumberU64() > newBlock.NumberU64() {
        // Old chain is longer, gather all transactions and logs as deleted ones
        for ; oldBlock != nil && oldBlock.NumberU64() != newBlock.NumberU64(); oldBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1) {
            oldChain = append(oldChain, oldBlock)
            deletedTxs = append(deletedTxs, oldBlock.Transactions()...)
            collectLogs(oldBlock.Hash(), true)
        }
    } else {
        // New chain is longer, stash all blocks away for subsequent insertion
        for ; newBlock != nil && newBlock.NumberU64() != oldBlock.NumberU64(); newBlock = bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1) {
            newChain = append(newChain, newBlock)
        }
    }
    if oldBlock == nil {
        return fmt.Errorf("invalid old chain")
    }
    if newBlock == nil {
        return fmt.Errorf("invalid new chain")
    }
    // Both sides of the reorg are at the same number, reduce both until the common
    // ancestor is found
    for {
        // If the common ancestor was found, bail out
        if oldBlock.Hash() == newBlock.Hash() {
            commonBlock = oldBlock
            break
        }
        // Remove an old block as well as stash away a new block
        oldChain = append(oldChain, oldBlock)
        deletedTxs = append(deletedTxs, oldBlock.Transactions()...)
        collectLogs(oldBlock.Hash(), true)

        newChain = append(newChain, newBlock)

        // Step back with both chains
        oldBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1)
        if oldBlock == nil {
            return fmt.Errorf("invalid old chain")
        }
        newBlock = bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1)
        if newBlock == nil {
            return fmt.Errorf("invalid new chain")
        }
    }
    // Ensure the user sees large reorgs
    if len(oldChain) > 0 && len(newChain) > 0 {
        logFn := log.Debug
        if len(oldChain) > 63 {
            logFn = log.Warn
        }
        logFn("Chain split detected", "number", commonBlock.Number(), "hash", commonBlock.Hash(),
            "drop", len(oldChain), "dropfrom", oldChain[0].Hash(), "add", len(newChain), "addfrom", newChain[0].Hash())
    } else {
        log.Error("Impossible reorg, please file an issue", "oldnum", oldBlock.Number(), "oldhash", oldBlock.Hash(), "newnum", newBlock.Number(), "newhash", newBlock.Hash())
    }
    // Insert the new chain, taking care of the proper incremental order
    for i := len(newChain) - 1; i >= 0; i-- {
        // Insert the block in the canonical way, re-writing history
        bc.insert(newChain[i])

        // Collect reborn logs due to chain reorg (except head block (reverse order))
        if i != 0 {
            collectLogs(newChain[i].Hash(), false)
        }
        // Write lookup entries for hash based transaction/receipt searches
        rawdb.WriteTxLookupEntries(bc.db, newChain[i])
        addedTxs = append(addedTxs, newChain[i].Transactions()...)
    }
    // When transactions get deleted from the database, the receipts that were
    // created in the fork must also be deleted
    batch := bc.db.NewBatch()
    for _, tx := range types.TxDifference(deletedTxs, addedTxs) {
        rawdb.DeleteTxLookupEntry(batch, tx.Hash())
    }
    batch.Write()

    // If any logs need to be fired, do it now. In theory we could avoid creating
    // this goroutine if there are no events to fire, but realistcally that only
    // ever happens if we're reorging empty blocks, which will only happen on idle
    // networks where performance is not an issue either way.
    //
    // TODO(karalabe): Can we get rid of the goroutine somehow to guarantee correct
    // event ordering?
    go func() {
        if len(deletedLogs) > 0 {
            bc.rmLogsFeed.Send(RemovedLogsEvent{deletedLogs})
        }
        if len(rebirthLogs) > 0 {
            bc.logsFeed.Send(rebirthLogs)
        }
        if len(oldChain) > 0 {
            for _, block := range oldChain {
                bc.chainSideFeed.Send(ChainSideEvent{Block: block})
            }
        }
    }()
    return nil
}

// PostChainEvents iterates over the events generated by a chain insertion and
// posts them into the event feed.
// TODO: Should not expose PostChainEvents. The chain events should be posted in WriteBlock.
func (bc *BlockChain) PostChainEvents(events []interface{}, logs []*types.Log) {
    // post event logs for further processing
    if logs != nil {
        bc.logsFeed.Send(logs)
    }
    for _, event := range events {
        switch ev := event.(type) {
        case ChainEvent:
            bc.chainFeed.Send(ev)

        case ChainHeadEvent:
            bc.chainHeadFeed.Send(ev)

        case ChainSideEvent:
            bc.chainSideFeed.Send(ev)
        }
    }
}

func (bc *BlockChain) update() {
    futureTimer := time.NewTicker(5 * time.Second)
    defer futureTimer.Stop()
    for {
        select {
        case <-futureTimer.C:
            bc.procFutureBlocks()
        case <-bc.quit:
            return
        }
    }
}

// BadBlocks returns a list of the last 'bad blocks' that the client has seen on the network
func (bc *BlockChain) BadBlocks() []*types.Block {
    blocks := make([]*types.Block, 0, bc.badBlocks.Len())
    for _, hash := range bc.badBlocks.Keys() {
        if blk, exist := bc.badBlocks.Peek(hash); exist {
            block := blk.(*types.Block)
            blocks = append(blocks, block)
        }
    }
    return blocks
}

// addBadBlock adds a bad block to the bad-block LRU cache
func (bc *BlockChain) addBadBlock(block *types.Block) {
    bc.badBlocks.Add(block.Hash(), block)
}

// reportBlock logs a bad block error.
func (bc *BlockChain) reportBlock(block *types.Block, receipts types.Receipts, err error) {
    bc.addBadBlock(block)

    var receiptString string
    for i, receipt := range receipts {
        receiptString += fmt.Sprintf("\t %d: cumulative: %v gas: %v contract: %v status: %v tx: %v logs: %v bloom: %x state: %x\n",
            i, receipt.CumulativeGasUsed, receipt.GasUsed, receipt.ContractAddress.Hex(),
            receipt.Status, receipt.TxHash.Hex(), receipt.Logs, receipt.Bloom, receipt.PostState)
    }
    log.Error(fmt.Sprintf(`
########## BAD BLOCK #########
Chain config: %v

Number: %v
Hash: 0x%x
%v

Error: %v
##############################
`, bc.chainConfig, block.Number(), block.Hash(), receiptString, err))
}

// InsertHeaderChain attempts to insert the given header chain in to the local
// chain, possibly creating a reorg. If an error is returned, it will return the
// index number of the failing header as well an error describing what went wrong.
//
// The verify parameter can be used to fine tune whether nonce verification
// should be done or not. The reason behind the optional check is because some
// of the header retrieval mechanisms already need to verify nonces, as well as
// because nonces can be verified sparsely, not needing to check each.
func (bc *BlockChain) InsertHeaderChain(chain []*types.Header, checkFreq int) (int, error) {
    start := time.Now()
    if i, err := bc.hc.ValidateHeaderChain(chain, checkFreq); err != nil {
        return i, err
    }

    // Make sure only one thread manipulates the chain at once
    bc.chainmu.Lock()
    defer bc.chainmu.Unlock()

    bc.wg.Add(1)
    defer bc.wg.Done()

    whFunc := func(header *types.Header) error {
        bc.mu.Lock()
        defer bc.mu.Unlock()

        _, err := bc.hc.WriteHeader(header)
        return err
    }

    return bc.hc.InsertHeaderChain(chain, whFunc, start)
}

// writeHeader writes a header into the local chain, given that its parent is
// already known. If the total difficulty of the newly inserted header becomes
// greater than the current known TD, the canonical chain is re-routed.
//
// Note: This method is not concurrent-safe with inserting blocks simultaneously
// into the chain, as side effects caused by reorganisations cannot be emulated
// without the real blocks. Hence, writing headers directly should only be done
// in two scenarios: pure-header mode of operation (light clients), or properly
// separated header/block phases (non-archive clients).
func (bc *BlockChain) writeHeader(header *types.Header) error {
    bc.wg.Add(1)
    defer bc.wg.Done()

    bc.mu.Lock()
    defer bc.mu.Unlock()

    _, err := bc.hc.WriteHeader(header)
    return err
}

// CurrentHeader retrieves the current head header of the canonical chain. The
// header is retrieved from the HeaderChain's internal cache.
func (bc *BlockChain) CurrentHeader() *types.Header {
    return bc.hc.CurrentHeader()
}

// GetTd retrieves a block's total difficulty in the canonical chain from the
// database by hash and number, caching it if found.
func (bc *BlockChain) GetTd(hash common.Hash, number uint64) *big.Int {
    return bc.hc.GetTd(hash, number)
}

// GetTdByHash retrieves a block's total difficulty in the canonical chain from the
// database by hash, caching it if found.
func (bc *BlockChain) GetTdByHash(hash common.Hash) *big.Int {
    return bc.hc.GetTdByHash(hash)
}

// GetHeader retrieves a block header from the database by hash and number,
// caching it if found.
func (bc *BlockChain) GetHeader(hash common.Hash, number uint64) *types.Header {
    return bc.hc.GetHeader(hash, number)
}

// GetHeaderByHash retrieves a block header from the database by hash, caching it if
// found.
func (bc *BlockChain) GetHeaderByHash(hash common.Hash) *types.Header {
    return bc.hc.GetHeaderByHash(hash)
}

// HasHeader checks if a block header is present in the database or not, caching
// it if present.
func (bc *BlockChain) HasHeader(hash common.Hash, number uint64) bool {
    return bc.hc.HasHeader(hash, number)
}

// GetBlockHashesFromHash retrieves a number of block hashes starting at a given
// hash, fetching towards the genesis block.
func (bc *BlockChain) GetBlockHashesFromHash(hash common.Hash, max uint64) []common.Hash {
    return bc.hc.GetBlockHashesFromHash(hash, max)
}

// GetAncestor retrieves the Nth ancestor of a given block. It assumes that either the given block or
// a close ancestor of it is canonical. maxNonCanonical points to a downwards counter limiting the
// number of blocks to be individually checked before we reach the canonical chain.
//
// Note: ancestor == 0 returns the same block, 1 returns its parent and so on.
func (bc *BlockChain) GetAncestor(hash common.Hash, number, ancestor uint64, maxNonCanonical *uint64) (common.Hash, uint64) {
    bc.chainmu.Lock()
    defer bc.chainmu.Unlock()

    return bc.hc.GetAncestor(hash, number, ancestor, maxNonCanonical)
}

// GetHeaderByNumber retrieves a block header from the database by number,
// caching it (associated with its hash) if found.
func (bc *BlockChain) GetHeaderByNumber(number uint64) *types.Header {
    return bc.hc.GetHeaderByNumber(number)
}

// Config retrieves the blockchain's chain configuration.
func (bc *BlockChain) Config() *params.ChainConfig { return bc.chainConfig }

// Engine retrieves the blockchain's consensus engine.
func (bc *BlockChain) Engine() consensus.Engine { return bc.engine }

// SubscribeRemovedLogsEvent registers a subscription of RemovedLogsEvent.
func (bc *BlockChain) SubscribeRemovedLogsEvent(ch chan<- RemovedLogsEvent) event.Subscription {
    return bc.scope.Track(bc.rmLogsFeed.Subscribe(ch))
}

// SubscribeChainEvent registers a subscription of ChainEvent.
func (bc *BlockChain) SubscribeChainEvent(ch chan<- ChainEvent) event.Subscription {
    return bc.scope.Track(bc.chainFeed.Subscribe(ch))
}

// SubscribeChainHeadEvent registers a subscription of ChainHeadEvent.
func (bc *BlockChain) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription {
    return bc.scope.Track(bc.chainHeadFeed.Subscribe(ch))
}

// SubscribeChainSideEvent registers a subscription of ChainSideEvent.
func (bc *BlockChain) SubscribeChainSideEvent(ch chan<- ChainSideEvent) event.Subscription {
    return bc.scope.Track(bc.chainSideFeed.Subscribe(ch))
}

// SubscribeLogsEvent registers a subscription of []*types.Log.
func (bc *BlockChain) SubscribeLogsEvent(ch chan<- []*types.Log) event.Subscription {
    return bc.scope.Track(bc.logsFeed.Subscribe(ch))
}