aboutsummaryrefslogtreecommitdiffstats
path: root/core/state/sync_test.go
blob: 06c572ea62bd016794d9c025475f0992f02de88a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package state

import (
    "bytes"
    "math/big"
    "testing"

    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/crypto"
    "github.com/ethereum/go-ethereum/ethdb"
    "github.com/ethereum/go-ethereum/trie"
)

// testAccount is the data associated with an account used by the state tests.
type testAccount struct {
    address common.Address
    balance *big.Int
    nonce   uint64
    code    []byte
}

// makeTestState create a sample test state to test node-wise reconstruction.
func makeTestState() (Database, *ethdb.MemDatabase, common.Hash, []*testAccount) {
    // Create an empty state
    mem, _ := ethdb.NewMemDatabase()
    db := NewDatabase(mem)
    state, _ := New(common.Hash{}, db)

    // Fill it with some arbitrary data
    accounts := []*testAccount{}
    for i := byte(0); i < 96; i++ {
        obj := state.GetOrNewStateObject(common.BytesToAddress([]byte{i}))
        acc := &testAccount{address: common.BytesToAddress([]byte{i})}

        obj.AddBalance(big.NewInt(int64(11 * i)))
        acc.balance = big.NewInt(int64(11 * i))

        obj.SetNonce(uint64(42 * i))
        acc.nonce = uint64(42 * i)

        if i%3 == 0 {
            obj.SetCode(crypto.Keccak256Hash([]byte{i, i, i, i, i}), []byte{i, i, i, i, i})
            acc.code = []byte{i, i, i, i, i}
        }
        state.updateStateObject(obj)
        accounts = append(accounts, acc)
    }
    root, _ := state.CommitTo(mem, false)

    // Return the generated state
    return db, mem, root, accounts
}

// checkStateAccounts cross references a reconstructed state with an expected
// account array.
func checkStateAccounts(t *testing.T, db ethdb.Database, root common.Hash, accounts []*testAccount) {
    // Check root availability and state contents
    state, err := New(root, NewDatabase(db))
    if err != nil {
        t.Fatalf("failed to create state trie at %x: %v", root, err)
    }
    if err := checkStateConsistency(db, root); err != nil {
        t.Fatalf("inconsistent state trie at %x: %v", root, err)
    }
    for i, acc := range accounts {
        if balance := state.GetBalance(acc.address); balance.Cmp(acc.balance) != 0 {
            t.Errorf("account %d: balance mismatch: have %v, want %v", i, balance, acc.balance)
        }
        if nonce := state.GetNonce(acc.address); nonce != acc.nonce {
            t.Errorf("account %d: nonce mismatch: have %v, want %v", i, nonce, acc.nonce)
        }
        if code := state.GetCode(acc.address); !bytes.Equal(code, acc.code) {
            t.Errorf("account %d: code mismatch: have %x, want %x", i, code, acc.code)
        }
    }
}

// checkTrieConsistency checks that all nodes in a (sub-)trie are indeed present.
func checkTrieConsistency(db ethdb.Database, root common.Hash) error {
    if v, _ := db.Get(root[:]); v == nil {
        return nil // Consider a non existent state consistent.
    }
    trie, err := trie.New(root, db)
    if err != nil {
        return err
    }
    it := trie.NodeIterator(nil)
    for it.Next(true) {
    }
    return it.Error()
}

// checkStateConsistency checks that all data of a state root is present.
func checkStateConsistency(db ethdb.Database, root common.Hash) error {
    // Create and iterate a state trie rooted in a sub-node
    if _, err := db.Get(root.Bytes()); err != nil {
        return nil // Consider a non existent state consistent.
    }
    state, err := New(root, NewDatabase(db))
    if err != nil {
        return err
    }
    it := NewNodeIterator(state)
    for it.Next() {
    }
    return it.Error
}

// Tests that an empty state is not scheduled for syncing.
func TestEmptyStateSync(t *testing.T) {
    empty := common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
    db, _ := ethdb.NewMemDatabase()
    if req := NewStateSync(empty, db).Missing(1); len(req) != 0 {
        t.Errorf("content requested for empty state: %v", req)
    }
}

// Tests that given a root hash, a state can sync iteratively on a single thread,
// requesting retrieval tasks and returning all of them in one go.
func TestIterativeStateSyncIndividual(t *testing.T) { testIterativeStateSync(t, 1) }
func TestIterativeStateSyncBatched(t *testing.T)    { testIterativeStateSync(t, 100) }

func testIterativeStateSync(t *testing.T, batch int) {
    // Create a random state to copy
    _, srcMem, srcRoot, srcAccounts := makeTestState()

    // Create a destination state and sync with the scheduler
    dstDb, _ := ethdb.NewMemDatabase()
    sched := NewStateSync(srcRoot, dstDb)

    queue := append([]common.Hash{}, sched.Missing(batch)...)
    for len(queue) > 0 {
        results := make([]trie.SyncResult, len(queue))
        for i, hash := range queue {
            data, err := srcMem.Get(hash.Bytes())
            if err != nil {
                t.Fatalf("failed to retrieve node data for %x: %v", hash, err)
            }
            results[i] = trie.SyncResult{Hash: hash, Data: data}
        }
        if _, index, err := sched.Process(results); err != nil {
            t.Fatalf("failed to process result #%d: %v", index, err)
        }
        if index, err := sched.Commit(dstDb); err != nil {
            t.Fatalf("failed to commit data #%d: %v", index, err)
        }
        queue = append(queue[:0], sched.Missing(batch)...)
    }
    // Cross check that the two states are in sync
    checkStateAccounts(t, dstDb, srcRoot, srcAccounts)
}

// Tests that the trie scheduler can correctly reconstruct the state even if only
// partial results are returned, and the others sent only later.
func TestIterativeDelayedStateSync(t *testing.T) {
    // Create a random state to copy
    _, srcMem, srcRoot, srcAccounts := makeTestState()

    // Create a destination state and sync with the scheduler
    dstDb, _ := ethdb.NewMemDatabase()
    sched := NewStateSync(srcRoot, dstDb)

    queue := append([]common.Hash{}, sched.Missing(0)...)
    for len(queue) > 0 {
        // Sync only half of the scheduled nodes
        results := make([]trie.SyncResult, len(queue)/2+1)
        for i, hash := range queue[:len(results)] {
            data, err := srcMem.Get(hash.Bytes())
            if err != nil {
                t.Fatalf("failed to retrieve node data for %x: %v", hash, err)
            }
            results[i] = trie.SyncResult{Hash: hash, Data: data}
        }
        if _, index, err := sched.Process(results); err != nil {
            t.Fatalf("failed to process result #%d: %v", index, err)
        }
        if index, err := sched.Commit(dstDb); err != nil {
            t.Fatalf("failed to commit data #%d: %v", index, err)
        }
        queue = append(queue[len(results):], sched.Missing(0)...)
    }
    // Cross check that the two states are in sync
    checkStateAccounts(t, dstDb, srcRoot, srcAccounts)
}

// Tests that given a root hash, a trie can sync iteratively on a single thread,
// requesting retrieval tasks and returning all of them in one go, however in a
// random order.
func TestIterativeRandomStateSyncIndividual(t *testing.T) { testIterativeRandomStateSync(t, 1) }
func TestIterativeRandomStateSyncBatched(t *testing.T)    { testIterativeRandomStateSync(t, 100) }

func testIterativeRandomStateSync(t *testing.T, batch int) {
    // Create a random state to copy
    _, srcMem, srcRoot, srcAccounts := makeTestState()

    // Create a destination state and sync with the scheduler
    dstDb, _ := ethdb.NewMemDatabase()
    sched := NewStateSync(srcRoot, dstDb)

    queue := make(map[common.Hash]struct{})
    for _, hash := range sched.Missing(batch) {
        queue[hash] = struct{}{}
    }
    for len(queue) > 0 {
        // Fetch all the queued nodes in a random order
        results := make([]trie.SyncResult, 0, len(queue))
        for hash := range queue {
            data, err := srcMem.Get(hash.Bytes())
            if err != nil {
                t.Fatalf("failed to retrieve node data for %x: %v", hash, err)
            }
            results = append(results, trie.SyncResult{Hash: hash, Data: data})
        }
        // Feed the retrieved results back and queue new tasks
        if _, index, err := sched.Process(results); err != nil {
            t.Fatalf("failed to process result #%d: %v", index, err)
        }
        if index, err := sched.Commit(dstDb); err != nil {
            t.Fatalf("failed to commit data #%d: %v", index, err)
        }
        queue = make(map[common.Hash]struct{})
        for _, hash := range sched.Missing(batch) {
            queue[hash] = struct{}{}
        }
    }
    // Cross check that the two states are in sync
    checkStateAccounts(t, dstDb, srcRoot, srcAccounts)
}

// Tests that the trie scheduler can correctly reconstruct the state even if only
// partial results are returned (Even those randomly), others sent only later.
func TestIterativeRandomDelayedStateSync(t *testing.T) {
    // Create a random state to copy
    _, srcMem, srcRoot, srcAccounts := makeTestState()

    // Create a destination state and sync with the scheduler
    dstDb, _ := ethdb.NewMemDatabase()
    sched := NewStateSync(srcRoot, dstDb)

    queue := make(map[common.Hash]struct{})
    for _, hash := range sched.Missing(0) {
        queue[hash] = struct{}{}
    }
    for len(queue) > 0 {
        // Sync only half of the scheduled nodes, even those in random order
        results := make([]trie.SyncResult, 0, len(queue)/2+1)
        for hash := range queue {
            delete(queue, hash)

            data, err := srcMem.Get(hash.Bytes())
            if err != nil {
                t.Fatalf("failed to retrieve node data for %x: %v", hash, err)
            }
            results = append(results, trie.SyncResult{Hash: hash, Data: data})

            if len(results) >= cap(results) {
                break
            }
        }
        // Feed the retrieved results back and queue new tasks
        if _, index, err := sched.Process(results); err != nil {
            t.Fatalf("failed to process result #%d: %v", index, err)
        }
        if index, err := sched.Commit(dstDb); err != nil {
            t.Fatalf("failed to commit data #%d: %v", index, err)
        }
        for _, hash := range sched.Missing(0) {
            queue[hash] = struct{}{}
        }
    }
    // Cross check that the two states are in sync
    checkStateAccounts(t, dstDb, srcRoot, srcAccounts)
}

// Tests that at any point in time during a sync, only complete sub-tries are in
// the database.
func TestIncompleteStateSync(t *testing.T) {
    // Create a random state to copy
    _, srcMem, srcRoot, srcAccounts := makeTestState()

    checkTrieConsistency(srcMem, srcRoot)

    // Create a destination state and sync with the scheduler
    dstDb, _ := ethdb.NewMemDatabase()
    sched := NewStateSync(srcRoot, dstDb)

    added := []common.Hash{}
    queue := append([]common.Hash{}, sched.Missing(1)...)
    for len(queue) > 0 {
        // Fetch a batch of state nodes
        results := make([]trie.SyncResult, len(queue))
        for i, hash := range queue {
            data, err := srcMem.Get(hash.Bytes())
            if err != nil {
                t.Fatalf("failed to retrieve node data for %x: %v", hash, err)
            }
            results[i] = trie.SyncResult{Hash: hash, Data: data}
        }
        // Process each of the state nodes
        if _, index, err := sched.Process(results); err != nil {
            t.Fatalf("failed to process result #%d: %v", index, err)
        }
        if index, err := sched.Commit(dstDb); err != nil {
            t.Fatalf("failed to commit data #%d: %v", index, err)
        }
        for _, result := range results {
            added = append(added, result.Hash)
        }
        // Check that all known sub-tries added so far are complete or missing entirely.
    checkSubtries:
        for _, hash := range added {
            for _, acc := range srcAccounts {
                if hash == crypto.Keccak256Hash(acc.code) {
                    continue checkSubtries // skip trie check of code nodes.
                }
            }
            // Can't use checkStateConsistency here because subtrie keys may have odd
            // length and crash in LeafKey.
            if err := checkTrieConsistency(dstDb, hash); err != nil {
                t.Fatalf("state inconsistent: %v", err)
            }
        }
        // Fetch the next batch to retrieve
        queue = append(queue[:0], sched.Missing(1)...)
    }
    // Sanity check that removing any node from the database is detected
    for _, node := range added[1:] {
        key := node.Bytes()
        value, _ := dstDb.Get(key)

        dstDb.Delete(key)
        if err := checkStateConsistency(dstDb, added[0]); err == nil {
            t.Fatalf("trie inconsistency not caught, missing: %x", key)
        }
        dstDb.Put(key, value)
    }
}