aboutsummaryrefslogtreecommitdiffstats
path: root/core/vm/vm.go
blob: f72c853a2566c674258eb8af57987298da61ba2c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package vm

import (
    "fmt"
    "math/big"
    "time"

    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/crypto"
    "github.com/ethereum/go-ethereum/logger"
    "github.com/ethereum/go-ethereum/logger/glog"
    "github.com/ethereum/go-ethereum/params"
)

// Config are the configuration options for the EVM
type Config struct {
    Debug     bool
    EnableJit bool
    ForceJit  bool
    Logger    LogConfig
}

// EVM is used to run Ethereum based contracts and will utilise the
// passed environment to query external sources for state information.
// The EVM will run the byte code VM or JIT VM based on the passed
// configuration.
type EVM struct {
    env       Environment
    jumpTable vmJumpTable
    cfg       *Config

    logger *Logger
}

// New returns a new instance of the EVM.
func New(env Environment, cfg *Config) *EVM {
    // initialise a default config if none is present
    if cfg == nil {
        cfg = new(Config)
    }

    var logger *Logger
    if cfg.Debug {
        logger = newLogger(cfg.Logger, env)
    }

    return &EVM{
        env:       env,
        jumpTable: newJumpTable(env.BlockNumber()),
        cfg:       cfg,
        logger:    logger,
    }
}

// Run loops and evaluates the contract's code with the given input data
func (evm *EVM) Run(contract *Contract, input []byte) (ret []byte, err error) {
    evm.env.SetDepth(evm.env.Depth() + 1)
    defer evm.env.SetDepth(evm.env.Depth() - 1)

    if contract.CodeAddr != nil {
        if p := Precompiled[contract.CodeAddr.Str()]; p != nil {
            return evm.RunPrecompiled(p, input, contract)
        }
    }

    // Don't bother with the execution if there's no code.
    if len(contract.Code) == 0 {
        return nil, nil
    }

    var (
        codehash = crypto.Keccak256Hash(contract.Code) // codehash is used when doing jump dest caching
        program  *Program
    )
    if evm.cfg.EnableJit {
        // If the JIT is enabled check the status of the JIT program,
        // if it doesn't exist compile a new program in a separate
        // goroutine or wait for compilation to finish if the JIT is
        // forced.
        switch GetProgramStatus(codehash) {
        case progReady:
            return RunProgram(GetProgram(codehash), evm.env, contract, input)
        case progUnknown:
            if evm.cfg.ForceJit {
                // Create and compile program
                program = NewProgram(contract.Code)
                perr := CompileProgram(program)
                if perr == nil {
                    return RunProgram(program, evm.env, contract, input)
                }
                glog.V(logger.Info).Infoln("error compiling program", err)
            } else {
                // create and compile the program. Compilation
                // is done in a separate goroutine
                program = NewProgram(contract.Code)
                go func() {
                    err := CompileProgram(program)
                    if err != nil {
                        glog.V(logger.Info).Infoln("error compiling program", err)
                        return
                    }
                }()
            }
        }
    }

    var (
        caller     = contract.caller
        code       = contract.Code
        instrCount = 0

        op      OpCode         // current opcode
        mem     = NewMemory()  // bound memory
        stack   = newstack()   // local stack
        statedb = evm.env.Db() // current state
        // For optimisation reason we're using uint64 as the program counter.
        // It's theoretically possible to go above 2^64. The YP defines the PC to be uint256. Practically much less so feasible.
        pc = uint64(0) // program counter

        // jump evaluates and checks whether the given jump destination is a valid one
        // if valid move the `pc` otherwise return an error.
        jump = func(from uint64, to *big.Int) error {
            if !contract.jumpdests.has(codehash, code, to) {
                nop := contract.GetOp(to.Uint64())
                return fmt.Errorf("invalid jump destination (%v) %v", nop, to)
            }

            pc = to.Uint64()

            return nil
        }

        newMemSize *big.Int
        cost       *big.Int
    )
    contract.Input = input

    // User defer pattern to check for an error and, based on the error being nil or not, use all gas and return.
    defer func() {
        if err != nil && evm.cfg.Debug {
            evm.logger.captureState(pc, op, contract.Gas, cost, mem, stack, contract, err)
        }
    }()

    if glog.V(logger.Debug) {
        glog.Infof("running byte VM %x\n", codehash[:4])
        tstart := time.Now()
        defer func() {
            glog.Infof("byte VM %x done. time: %v instrc: %v\n", codehash[:4], time.Since(tstart), instrCount)
        }()
    }

    for ; ; instrCount++ {
        /*
            if EnableJit && it%100 == 0 {
                if program != nil && progStatus(atomic.LoadInt32(&program.status)) == progReady {
                    // move execution
                    fmt.Println("moved", it)
                    glog.V(logger.Info).Infoln("Moved execution to JIT")
                    return runProgram(program, pc, mem, stack, evm.env, contract, input)
                }
            }
        */

        // Get the memory location of pc
        op = contract.GetOp(pc)
        // calculate the new memory size and gas price for the current executing opcode
        newMemSize, cost, err = calculateGasAndSize(evm.env, contract, caller, op, statedb, mem, stack)
        if err != nil {
            return nil, err
        }

        // Use the calculated gas. When insufficient gas is present, use all gas and return an
        // Out Of Gas error
        if !contract.UseGas(cost) {
            return nil, OutOfGasError
        }

        // Resize the memory calculated previously
        mem.Resize(newMemSize.Uint64())
        // Add a log message
        if evm.cfg.Debug {
            evm.logger.captureState(pc, op, contract.Gas, cost, mem, stack, contract, nil)
        }

        if opPtr := evm.jumpTable[op]; opPtr.valid {
            if opPtr.fn != nil {
                opPtr.fn(instruction{}, &pc, evm.env, contract, mem, stack)
            } else {
                switch op {
                case PC:
                    opPc(instruction{data: new(big.Int).SetUint64(pc)}, &pc, evm.env, contract, mem, stack)
                case JUMP:
                    if err := jump(pc, stack.pop()); err != nil {
                        return nil, err
                    }

                    continue
                case JUMPI:
                    pos, cond := stack.pop(), stack.pop()

                    if cond.Cmp(common.BigTrue) >= 0 {
                        if err := jump(pc, pos); err != nil {
                            return nil, err
                        }

                        continue
                    }
                case RETURN:
                    offset, size := stack.pop(), stack.pop()
                    ret := mem.GetPtr(offset.Int64(), size.Int64())

                    return ret, nil
                case SUICIDE:
                    opSuicide(instruction{}, nil, evm.env, contract, mem, stack)

                    fallthrough
                case STOP: // Stop the contract
                    return nil, nil
                }
            }
        } else {
            return nil, fmt.Errorf("Invalid opcode %x", op)
        }

        pc++

    }
}

// calculateGasAndSize calculates the required given the opcode and stack items calculates the new memorysize for
// the operation. This does not reduce gas or resizes the memory.
func calculateGasAndSize(env Environment, contract *Contract, caller ContractRef, op OpCode, statedb Database, mem *Memory, stack *stack) (*big.Int, *big.Int, error) {
    var (
        gas                 = new(big.Int)
        newMemSize *big.Int = new(big.Int)
    )
    err := baseCheck(op, stack, gas)
    if err != nil {
        return nil, nil, err
    }

    // stack Check, memory resize & gas phase
    switch op {
    case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16:
        n := int(op - SWAP1 + 2)
        err := stack.require(n)
        if err != nil {
            return nil, nil, err
        }
        gas.Set(GasFastestStep)
    case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16:
        n := int(op - DUP1 + 1)
        err := stack.require(n)
        if err != nil {
            return nil, nil, err
        }
        gas.Set(GasFastestStep)
    case LOG0, LOG1, LOG2, LOG3, LOG4:
        n := int(op - LOG0)
        err := stack.require(n + 2)
        if err != nil {
            return nil, nil, err
        }

        mSize, mStart := stack.data[stack.len()-2], stack.data[stack.len()-1]

        gas.Add(gas, params.LogGas)
        gas.Add(gas, new(big.Int).Mul(big.NewInt(int64(n)), params.LogTopicGas))
        gas.Add(gas, new(big.Int).Mul(mSize, params.LogDataGas))

        newMemSize = calcMemSize(mStart, mSize)
    case EXP:
        gas.Add(gas, new(big.Int).Mul(big.NewInt(int64(len(stack.data[stack.len()-2].Bytes()))), params.ExpByteGas))
    case SSTORE:
        err := stack.require(2)
        if err != nil {
            return nil, nil, err
        }

        var g *big.Int
        y, x := stack.data[stack.len()-2], stack.data[stack.len()-1]
        val := statedb.GetState(contract.Address(), common.BigToHash(x))

        // This checks for 3 scenario's and calculates gas accordingly
        // 1. From a zero-value address to a non-zero value         (NEW VALUE)
        // 2. From a non-zero value address to a zero-value address (DELETE)
        // 3. From a non-zero to a non-zero                         (CHANGE)
        if common.EmptyHash(val) && !common.EmptyHash(common.BigToHash(y)) {
            // 0 => non 0
            g = params.SstoreSetGas
        } else if !common.EmptyHash(val) && common.EmptyHash(common.BigToHash(y)) {
            statedb.AddRefund(params.SstoreRefundGas)

            g = params.SstoreClearGas
        } else {
            // non 0 => non 0 (or 0 => 0)
            g = params.SstoreClearGas
        }
        gas.Set(g)
    case SUICIDE:
        if !statedb.IsDeleted(contract.Address()) {
            statedb.AddRefund(params.SuicideRefundGas)
        }
    case MLOAD:
        newMemSize = calcMemSize(stack.peek(), u256(32))
    case MSTORE8:
        newMemSize = calcMemSize(stack.peek(), u256(1))
    case MSTORE:
        newMemSize = calcMemSize(stack.peek(), u256(32))
    case RETURN:
        newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-2])
    case SHA3:
        newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-2])

        words := toWordSize(stack.data[stack.len()-2])
        gas.Add(gas, words.Mul(words, params.Sha3WordGas))
    case CALLDATACOPY:
        newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-3])

        words := toWordSize(stack.data[stack.len()-3])
        gas.Add(gas, words.Mul(words, params.CopyGas))
    case CODECOPY:
        newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-3])

        words := toWordSize(stack.data[stack.len()-3])
        gas.Add(gas, words.Mul(words, params.CopyGas))
    case EXTCODECOPY:
        newMemSize = calcMemSize(stack.data[stack.len()-2], stack.data[stack.len()-4])

        words := toWordSize(stack.data[stack.len()-4])
        gas.Add(gas, words.Mul(words, params.CopyGas))

    case CREATE:
        newMemSize = calcMemSize(stack.data[stack.len()-2], stack.data[stack.len()-3])
    case CALL, CALLCODE:
        gas.Add(gas, stack.data[stack.len()-1])

        if op == CALL {
            if !env.Db().Exist(common.BigToAddress(stack.data[stack.len()-2])) {
                gas.Add(gas, params.CallNewAccountGas)
            }
        }

        if len(stack.data[stack.len()-3].Bytes()) > 0 {
            gas.Add(gas, params.CallValueTransferGas)
        }

        x := calcMemSize(stack.data[stack.len()-6], stack.data[stack.len()-7])
        y := calcMemSize(stack.data[stack.len()-4], stack.data[stack.len()-5])

        newMemSize = common.BigMax(x, y)
    case DELEGATECALL:
        gas.Add(gas, stack.data[stack.len()-1])

        x := calcMemSize(stack.data[stack.len()-5], stack.data[stack.len()-6])
        y := calcMemSize(stack.data[stack.len()-3], stack.data[stack.len()-4])

        newMemSize = common.BigMax(x, y)
    }
    quadMemGas(mem, newMemSize, gas)

    return newMemSize, gas, nil
}

// RunPrecompile runs and evaluate the output of a precompiled contract defined in contracts.go
func (evm *EVM) RunPrecompiled(p *PrecompiledAccount, input []byte, contract *Contract) (ret []byte, err error) {
    gas := p.Gas(len(input))
    if contract.UseGas(gas) {
        ret = p.Call(input)

        return ret, nil
    } else {
        return nil, OutOfGasError
    }
}