aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/key_store_passphrase.go
blob: 807a91397f0309516c318323097970901632ae71 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/*
    This file is part of go-ethereum

    go-ethereum is free software: you can redistribute it and/or modify
    it under the terms of the GNU Lesser General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    go-ethereum is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU Lesser General Public License
    along with go-ethereum.  If not, see <http://www.gnu.org/licenses/>.
*/
/**
 * @authors
 *  Gustav Simonsson <gustav.simonsson@gmail.com>
 * @date 2015
 *
 */
/*

This key store behaves as KeyStorePlain with the difference that
the private key is encrypted and on disk uses another JSON encoding.

Cryptography:

1. Encryption key is scrypt derived key from user passphrase. Scrypt parameters
   (work factors) [1][2] are defined as constants below.
2. Scrypt salt is 32 random bytes from CSPRNG. It is appended to ciphertext.
3. Checksum is SHA3 of the private key bytes.
4. Plaintext is concatenation of private key bytes and checksum.
5. Encryption algo is AES 256 CBC [3][4]
6. CBC IV is 16 random bytes from CSPRNG. It is appended to ciphertext.
7. Plaintext padding is PKCS #7 [5][6]

Encoding:

1. On disk, ciphertext, salt and IV are encoded in a nested JSON object.
   cat a key file to see the structure.
2. byte arrays are base64 JSON strings.
3. The EC private key bytes are in uncompressed form [7].
   They are a big-endian byte slice of the absolute value of D [8][9].
4. The checksum is the last 32 bytes of the plaintext byte array and the
   private key is the preceeding bytes.

References:

1. http://www.tarsnap.com/scrypt/scrypt-slides.pdf
2. http://stackoverflow.com/questions/11126315/what-are-optimal-scrypt-work-factors
3. http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
4. http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher-block_chaining_.28CBC.29
5. https://leanpub.com/gocrypto/read#leanpub-auto-block-cipher-modes
6. http://tools.ietf.org/html/rfc2315
7. http://bitcoin.stackexchange.com/questions/3059/what-is-a-compressed-bitcoin-key
8. http://golang.org/pkg/crypto/ecdsa/#PrivateKey
9. https://golang.org/pkg/math/big/#Int.Bytes

*/

package crypto

import (
    "bytes"
    "code.google.com/p/go-uuid/uuid"
    "code.google.com/p/go.crypto/scrypt"
    "crypto/aes"
    "crypto/cipher"
    crand "crypto/rand"
    "encoding/hex"
    "encoding/json"
    "errors"
    "io"
    "os"
    "path"
)

const (
    // 2^18 / 8 / 1 uses 256MB memory and approx 1s CPU time on a modern CPU.
    scryptN     = 1 << 18
    scryptr     = 8
    scryptp     = 1
    scryptdkLen = 32
)

type keyStorePassphrase struct {
    keysDirPath string
}

func NewKeyStorePassphrase(path string) KeyStore2 {
    return &keyStorePassphrase{path}
}

func (ks keyStorePassphrase) GenerateNewKey(rand io.Reader, auth string) (key *Key, err error) {
    return GenerateNewKeyDefault(ks, rand, auth)
}

func (ks keyStorePassphrase) GetKey(keyAddr []byte, auth string) (key *Key, err error) {
    keyBytes, keyId, err := DecryptKey(ks, keyAddr, auth)
    if err != nil {
        return nil, err
    }
    key = &Key{
        Id:         uuid.UUID(keyId),
        Address:    keyAddr,
        PrivateKey: ToECDSA(keyBytes),
    }
    return key, err
}

func (ks keyStorePassphrase) GetKeyAddresses() (addresses [][]byte, err error) {
    return GetKeyAddresses(ks.keysDirPath)
}

func (ks keyStorePassphrase) StoreKey(key *Key, auth string) (err error) {
    authArray := []byte(auth)
    salt := getEntropyCSPRNG(32)
    derivedKey, err := scrypt.Key(authArray, salt, scryptN, scryptr, scryptp, scryptdkLen)
    if err != nil {
        return err
    }

    keyBytes := FromECDSA(key.PrivateKey)
    keyBytesHash := Sha3(keyBytes)
    toEncrypt := PKCS7Pad(append(keyBytes, keyBytesHash...))

    AES256Block, err := aes.NewCipher(derivedKey)
    if err != nil {
        return err
    }

    iv := getEntropyCSPRNG(aes.BlockSize) // 16
    AES256CBCEncrypter := cipher.NewCBCEncrypter(AES256Block, iv)
    cipherText := make([]byte, len(toEncrypt))
    AES256CBCEncrypter.CryptBlocks(cipherText, toEncrypt)

    cipherStruct := cipherJSON{
        salt,
        iv,
        cipherText,
    }
    keyStruct := encryptedKeyJSON{
        key.Id,
        key.Address,
        cipherStruct,
    }
    keyJSON, err := json.Marshal(keyStruct)
    if err != nil {
        return err
    }

    return WriteKeyFile(key.Address, ks.keysDirPath, keyJSON)
}

func (ks keyStorePassphrase) DeleteKey(keyAddr []byte, auth string) (err error) {
    // only delete if correct passphrase is given
    _, _, err = DecryptKey(ks, keyAddr, auth)
    if err != nil {
        return err
    }

    keyDirPath := path.Join(ks.keysDirPath, hex.EncodeToString(keyAddr))
    return os.RemoveAll(keyDirPath)
}

func DecryptKey(ks keyStorePassphrase, keyAddr []byte, auth string) (keyBytes []byte, keyId []byte, err error) {
    fileContent, err := GetKeyFile(ks.keysDirPath, keyAddr)
    if err != nil {
        return nil, nil, err
    }

    keyProtected := new(encryptedKeyJSON)
    err = json.Unmarshal(fileContent, keyProtected)

    keyId = keyProtected.Id
    salt := keyProtected.Crypto.Salt
    iv := keyProtected.Crypto.IV
    cipherText := keyProtected.Crypto.CipherText

    authArray := []byte(auth)
    derivedKey, err := scrypt.Key(authArray, salt, scryptN, scryptr, scryptp, scryptdkLen)
    if err != nil {
        return nil, nil, err
    }
    plainText, err := aesCBCDecrypt(derivedKey, cipherText, iv)
    if err != nil {
        return nil, nil, err
    }
    keyBytes = plainText[:len(plainText)-32]
    keyBytesHash := plainText[len(plainText)-32:]
    if !bytes.Equal(Sha3(keyBytes), keyBytesHash) {
        err = errors.New("Decryption failed: checksum mismatch")
        return nil, nil, err
    }
    return keyBytes, keyId, err
}

func getEntropyCSPRNG(n int) []byte {
    mainBuff := make([]byte, n)
    _, err := io.ReadFull(crand.Reader, mainBuff)
    if err != nil {
        panic("key generation: reading from crypto/rand failed: " + err.Error())
    }
    return mainBuff
}