aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/secp256k1/curve.go
blob: df804818576ee54e1dc4318abc4d61fdc687678b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
// Copyright 2010 The Go Authors. All rights reserved.
// Copyright 2011 ThePiachu. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
//   notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
//   copyright notice, this list of conditions and the following disclaimer
//   in the documentation and/or other materials provided with the
//   distribution.
// * Neither the name of Google Inc. nor the names of its
//   contributors may be used to endorse or promote products derived from
//   this software without specific prior written permission.
// * The name of ThePiachu may not be used to endorse or promote products
//   derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

package secp256k1

import (
    "crypto/elliptic"
    "math/big"
    "unsafe"

    "github.com/ethereum/go-ethereum/common/math"
)

/*
#include "libsecp256k1/include/secp256k1.h"
extern int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar);
*/
import "C"

// This code is from https://github.com/ThePiachu/GoBit and implements
// several Koblitz elliptic curves over prime fields.
//
// The curve methods, internally, on Jacobian coordinates. For a given
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1,
// z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come
// when the whole calculation can be performed within the transform
// (as in ScalarMult and ScalarBaseMult). But even for Add and Double,
// it's faster to apply and reverse the transform than to operate in
// affine coordinates.

// A BitCurve represents a Koblitz Curve with a=0.
// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
type BitCurve struct {
    P       *big.Int // the order of the underlying field
    N       *big.Int // the order of the base point
    B       *big.Int // the constant of the BitCurve equation
    Gx, Gy  *big.Int // (x,y) of the base point
    BitSize int      // the size of the underlying field
}

func (BitCurve *BitCurve) Params() *elliptic.CurveParams {
    return &elliptic.CurveParams{
        P:       BitCurve.P,
        N:       BitCurve.N,
        B:       BitCurve.B,
        Gx:      BitCurve.Gx,
        Gy:      BitCurve.Gy,
        BitSize: BitCurve.BitSize,
    }
}

// IsOnBitCurve returns true if the given (x,y) lies on the BitCurve.
func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
    // y² = x³ + b
    y2 := new(big.Int).Mul(y, y) //y²
    y2.Mod(y2, BitCurve.P)       //y²%P

    x3 := new(big.Int).Mul(x, x) //x²
    x3.Mul(x3, x)                //x³

    x3.Add(x3, BitCurve.B) //x³+B
    x3.Mod(x3, BitCurve.P) //(x³+B)%P

    return x3.Cmp(y2) == 0
}

//TODO: double check if the function is okay
// affineFromJacobian reverses the Jacobian transform. See the comment at the
// top of the file.
func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
    zinv := new(big.Int).ModInverse(z, BitCurve.P)
    zinvsq := new(big.Int).Mul(zinv, zinv)

    xOut = new(big.Int).Mul(x, zinvsq)
    xOut.Mod(xOut, BitCurve.P)
    zinvsq.Mul(zinvsq, zinv)
    yOut = new(big.Int).Mul(y, zinvsq)
    yOut.Mod(yOut, BitCurve.P)
    return
}

// Add returns the sum of (x1,y1) and (x2,y2)
func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
    z := new(big.Int).SetInt64(1)
    return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
}

// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
// (x2, y2, z2) and returns their sum, also in Jacobian form.
func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
    // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
    z1z1 := new(big.Int).Mul(z1, z1)
    z1z1.Mod(z1z1, BitCurve.P)
    z2z2 := new(big.Int).Mul(z2, z2)
    z2z2.Mod(z2z2, BitCurve.P)

    u1 := new(big.Int).Mul(x1, z2z2)
    u1.Mod(u1, BitCurve.P)
    u2 := new(big.Int).Mul(x2, z1z1)
    u2.Mod(u2, BitCurve.P)
    h := new(big.Int).Sub(u2, u1)
    if h.Sign() == -1 {
        h.Add(h, BitCurve.P)
    }
    i := new(big.Int).Lsh(h, 1)
    i.Mul(i, i)
    j := new(big.Int).Mul(h, i)

    s1 := new(big.Int).Mul(y1, z2)
    s1.Mul(s1, z2z2)
    s1.Mod(s1, BitCurve.P)
    s2 := new(big.Int).Mul(y2, z1)
    s2.Mul(s2, z1z1)
    s2.Mod(s2, BitCurve.P)
    r := new(big.Int).Sub(s2, s1)
    if r.Sign() == -1 {
        r.Add(r, BitCurve.P)
    }
    r.Lsh(r, 1)
    v := new(big.Int).Mul(u1, i)

    x3 := new(big.Int).Set(r)
    x3.Mul(x3, x3)
    x3.Sub(x3, j)
    x3.Sub(x3, v)
    x3.Sub(x3, v)
    x3.Mod(x3, BitCurve.P)

    y3 := new(big.Int).Set(r)
    v.Sub(v, x3)
    y3.Mul(y3, v)
    s1.Mul(s1, j)
    s1.Lsh(s1, 1)
    y3.Sub(y3, s1)
    y3.Mod(y3, BitCurve.P)

    z3 := new(big.Int).Add(z1, z2)
    z3.Mul(z3, z3)
    z3.Sub(z3, z1z1)
    if z3.Sign() == -1 {
        z3.Add(z3, BitCurve.P)
    }
    z3.Sub(z3, z2z2)
    if z3.Sign() == -1 {
        z3.Add(z3, BitCurve.P)
    }
    z3.Mul(z3, h)
    z3.Mod(z3, BitCurve.P)

    return x3, y3, z3
}

// Double returns 2*(x,y)
func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
    z1 := new(big.Int).SetInt64(1)
    return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1))
}

// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
// returns its double, also in Jacobian form.
func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
    // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l

    a := new(big.Int).Mul(x, x) //X1²
    b := new(big.Int).Mul(y, y) //Y1²
    c := new(big.Int).Mul(b, b) //B²

    d := new(big.Int).Add(x, b) //X1+B
    d.Mul(d, d)                 //(X1+B)²
    d.Sub(d, a)                 //(X1+B)²-A
    d.Sub(d, c)                 //(X1+B)²-A-C
    d.Mul(d, big.NewInt(2))     //2*((X1+B)²-A-C)

    e := new(big.Int).Mul(big.NewInt(3), a) //3*A
    f := new(big.Int).Mul(e, e)             //E²

    x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
    x3.Sub(f, x3)                            //F-2*D
    x3.Mod(x3, BitCurve.P)

    y3 := new(big.Int).Sub(d, x3)                  //D-X3
    y3.Mul(e, y3)                                  //E*(D-X3)
    y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
    y3.Mod(y3, BitCurve.P)

    z3 := new(big.Int).Mul(y, z) //Y1*Z1
    z3.Mul(big.NewInt(2), z3)    //3*Y1*Z1
    z3.Mod(z3, BitCurve.P)

    return x3, y3, z3
}

func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
    // Ensure scalar is exactly 32 bytes. We pad always, even if
    // scalar is 32 bytes long, to avoid a timing side channel.
    if len(scalar) > 32 {
        panic("can't handle scalars > 256 bits")
    }
    // NOTE: potential timing issue
    padded := make([]byte, 32)
    copy(padded[32-len(scalar):], scalar)
    scalar = padded

    // Do the multiplication in C, updating point.
    point := make([]byte, 64)
    math.ReadBits(Bx, point[:32])
    math.ReadBits(By, point[32:])
    pointPtr := (*C.uchar)(unsafe.Pointer(&point[0]))
    scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0]))
    res := C.secp256k1_ext_scalar_mul(context, pointPtr, scalarPtr)

    // Unpack the result and clear temporaries.
    x := new(big.Int).SetBytes(point[:32])
    y := new(big.Int).SetBytes(point[32:])
    for i := range point {
        point[i] = 0
    }
    for i := range padded {
        scalar[i] = 0
    }
    if res != 1 {
        return nil, nil
    }
    return x, y
}

// ScalarBaseMult returns k*G, where G is the base point of the group and k is
// an integer in big-endian form.
func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
    return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
}

// Marshal converts a point into the form specified in section 4.3.6 of ANSI
// X9.62.
func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
    byteLen := (BitCurve.BitSize + 7) >> 3
    ret := make([]byte, 1+2*byteLen)
    ret[0] = 4 // uncompressed point flag
    math.ReadBits(x, ret[1:1+byteLen])
    math.ReadBits(y, ret[1+byteLen:])
    return ret
}

// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
// error, x = nil.
func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
    byteLen := (BitCurve.BitSize + 7) >> 3
    if len(data) != 1+2*byteLen {
        return
    }
    if data[0] != 4 { // uncompressed form
        return
    }
    x = new(big.Int).SetBytes(data[1 : 1+byteLen])
    y = new(big.Int).SetBytes(data[1+byteLen:])
    return
}

var theCurve = new(BitCurve)

func init() {
    // See SEC 2 section 2.7.1
    // curve parameters taken from:
    // http://www.secg.org/collateral/sec2_final.pdf
    theCurve.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16)
    theCurve.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16)
    theCurve.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16)
    theCurve.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16)
    theCurve.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16)
    theCurve.BitSize = 256
}

// S256 returns a BitCurve which implements secp256k1.
func S256() *BitCurve {
    return theCurve
}