1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECDSA_IMPL_H_
#define _SECP256K1_ECDSA_IMPL_H_
#include "scalar.h"
#include "field.h"
#include "group.h"
#include "ecmult.h"
#include "ecmult_gen.h"
#include "ecdsa.h"
/** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1
* sage: for t in xrange(1023, -1, -1):
* .. p = 2**256 - 2**32 - t
* .. if p.is_prime():
* .. print '%x'%p
* .. break
* 'fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f'
* sage: a = 0
* sage: b = 7
* sage: F = FiniteField (p)
* sage: '%x' % (EllipticCurve ([F (a), F (b)]).order())
* 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141'
*/
static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL
);
/** Difference between field and order, values 'p' and 'n' values defined in
* "Standards for Efficient Cryptography" (SEC2) 2.7.1.
* sage: p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
* sage: a = 0
* sage: b = 7
* sage: F = FiniteField (p)
* sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order())
* '14551231950b75fc4402da1722fc9baee'
*/
static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
);
static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) {
unsigned char ra[32] = {0}, sa[32] = {0};
const unsigned char *rp;
const unsigned char *sp;
size_t lenr;
size_t lens;
int overflow;
if (sig[0] != 0x30) {
return 0;
}
lenr = sig[3];
if (5+lenr >= size) {
return 0;
}
lens = sig[lenr+5];
if (sig[1] != lenr+lens+4) {
return 0;
}
if (lenr+lens+6 > size) {
return 0;
}
if (sig[2] != 0x02) {
return 0;
}
if (lenr == 0) {
return 0;
}
if (sig[lenr+4] != 0x02) {
return 0;
}
if (lens == 0) {
return 0;
}
sp = sig + 6 + lenr;
while (lens > 0 && sp[0] == 0) {
lens--;
sp++;
}
if (lens > 32) {
return 0;
}
rp = sig + 4;
while (lenr > 0 && rp[0] == 0) {
lenr--;
rp++;
}
if (lenr > 32) {
return 0;
}
memcpy(ra + 32 - lenr, rp, lenr);
memcpy(sa + 32 - lens, sp, lens);
overflow = 0;
secp256k1_scalar_set_b32(rr, ra, &overflow);
if (overflow) {
return 0;
}
secp256k1_scalar_set_b32(rs, sa, &overflow);
if (overflow) {
return 0;
}
return 1;
}
static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar* ar, const secp256k1_scalar* as) {
unsigned char r[33] = {0}, s[33] = {0};
unsigned char *rp = r, *sp = s;
size_t lenR = 33, lenS = 33;
secp256k1_scalar_get_b32(&r[1], ar);
secp256k1_scalar_get_b32(&s[1], as);
while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; }
while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; }
if (*size < 6+lenS+lenR) {
*size = 6 + lenS + lenR;
return 0;
}
*size = 6 + lenS + lenR;
sig[0] = 0x30;
sig[1] = 4 + lenS + lenR;
sig[2] = 0x02;
sig[3] = lenR;
memcpy(sig+4, rp, lenR);
sig[4+lenR] = 0x02;
sig[5+lenR] = lenS;
memcpy(sig+lenR+6, sp, lenS);
return 1;
}
static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) {
unsigned char c[32];
secp256k1_scalar sn, u1, u2;
secp256k1_fe xr;
secp256k1_gej pubkeyj;
secp256k1_gej pr;
if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
return 0;
}
secp256k1_scalar_inverse_var(&sn, sigs);
secp256k1_scalar_mul(&u1, &sn, message);
secp256k1_scalar_mul(&u2, &sn, sigr);
secp256k1_gej_set_ge(&pubkeyj, pubkey);
secp256k1_ecmult(ctx, &pr, &pubkeyj, &u2, &u1);
if (secp256k1_gej_is_infinity(&pr)) {
return 0;
}
secp256k1_scalar_get_b32(c, sigr);
secp256k1_fe_set_b32(&xr, c);
/** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
* in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
* compute the remainder modulo n, and compare it to xr. However:
*
* xr == X(pr) mod n
* <=> exists h. (xr + h * n < p && xr + h * n == X(pr))
* [Since 2 * n > p, h can only be 0 or 1]
* <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr))
* [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p]
* <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p)
* [Multiplying both sides of the equations by pr.z^2 mod p]
* <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x)
*
* Thus, we can avoid the inversion, but we have to check both cases separately.
* secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test.
*/
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
/* xr.x == xr * xr.z^2 mod p, so the signature is valid. */
return 1;
}
if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
/* xr + p >= n, so we can skip testing the second case. */
return 0;
}
secp256k1_fe_add(&xr, &secp256k1_ecdsa_const_order_as_fe);
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
/* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */
return 1;
}
return 0;
}
static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar* sigs, secp256k1_ge *pubkey, const secp256k1_scalar *message, int recid) {
unsigned char brx[32];
secp256k1_fe fx;
secp256k1_ge x;
secp256k1_gej xj;
secp256k1_scalar rn, u1, u2;
secp256k1_gej qj;
if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
return 0;
}
secp256k1_scalar_get_b32(brx, sigr);
VERIFY_CHECK(secp256k1_fe_set_b32(&fx, brx)); /* brx comes from a scalar, so is less than the order; certainly less than p */
if (recid & 2) {
if (secp256k1_fe_cmp_var(&fx, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
return 0;
}
secp256k1_fe_add(&fx, &secp256k1_ecdsa_const_order_as_fe);
}
if (!secp256k1_ge_set_xo_var(&x, &fx, recid & 1)) {
return 0;
}
secp256k1_gej_set_ge(&xj, &x);
secp256k1_scalar_inverse_var(&rn, sigr);
secp256k1_scalar_mul(&u1, &rn, message);
secp256k1_scalar_negate(&u1, &u1);
secp256k1_scalar_mul(&u2, &rn, sigs);
secp256k1_ecmult(ctx, &qj, &xj, &u2, &u1);
secp256k1_ge_set_gej_var(pubkey, &qj);
return !secp256k1_gej_is_infinity(&qj);
}
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) {
unsigned char b[32];
secp256k1_gej rp;
secp256k1_ge r;
secp256k1_scalar n;
int overflow = 0;
secp256k1_ecmult_gen(ctx, &rp, nonce);
secp256k1_ge_set_gej(&r, &rp);
secp256k1_fe_normalize(&r.x);
secp256k1_fe_normalize(&r.y);
secp256k1_fe_get_b32(b, &r.x);
secp256k1_scalar_set_b32(sigr, b, &overflow);
if (secp256k1_scalar_is_zero(sigr)) {
/* P.x = order is on the curve, so technically sig->r could end up zero, which would be an invalid signature. */
secp256k1_gej_clear(&rp);
secp256k1_ge_clear(&r);
return 0;
}
if (recid) {
*recid = (overflow ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0);
}
secp256k1_scalar_mul(&n, sigr, seckey);
secp256k1_scalar_add(&n, &n, message);
secp256k1_scalar_inverse(sigs, nonce);
secp256k1_scalar_mul(sigs, sigs, &n);
secp256k1_scalar_clear(&n);
secp256k1_gej_clear(&rp);
secp256k1_ge_clear(&r);
if (secp256k1_scalar_is_zero(sigs)) {
return 0;
}
if (secp256k1_scalar_is_high(sigs)) {
secp256k1_scalar_negate(sigs, sigs);
if (recid) {
*recid ^= 1;
}
}
return 1;
}
#endif
|