1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
|
// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
)
var (
memcacheFlushTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/flush/time", nil)
memcacheFlushNodesMeter = metrics.NewRegisteredMeter("trie/memcache/flush/nodes", nil)
memcacheFlushSizeMeter = metrics.NewRegisteredMeter("trie/memcache/flush/size", nil)
memcacheGCTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/gc/time", nil)
memcacheGCNodesMeter = metrics.NewRegisteredMeter("trie/memcache/gc/nodes", nil)
memcacheGCSizeMeter = metrics.NewRegisteredMeter("trie/memcache/gc/size", nil)
memcacheCommitTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/commit/time", nil)
memcacheCommitNodesMeter = metrics.NewRegisteredMeter("trie/memcache/commit/nodes", nil)
memcacheCommitSizeMeter = metrics.NewRegisteredMeter("trie/memcache/commit/size", nil)
)
// secureKeyPrefix is the database key prefix used to store trie node preimages.
var secureKeyPrefix = []byte("secure-key-")
// secureKeyLength is the length of the above prefix + 32byte hash.
const secureKeyLength = 11 + 32
// DatabaseReader wraps the Get and Has method of a backing store for the trie.
type DatabaseReader interface {
// Get retrieves the value associated with key form the database.
Get(key []byte) (value []byte, err error)
// Has retrieves whether a key is present in the database.
Has(key []byte) (bool, error)
}
// Database is an intermediate write layer between the trie data structures and
// the disk database. The aim is to accumulate trie writes in-memory and only
// periodically flush a couple tries to disk, garbage collecting the remainder.
type Database struct {
diskdb ethdb.Database // Persistent storage for matured trie nodes
nodes map[common.Hash]*cachedNode // Data and references relationships of a node
oldest common.Hash // Oldest tracked node, flush-list head
newest common.Hash // Newest tracked node, flush-list tail
preimages map[common.Hash][]byte // Preimages of nodes from the secure trie
seckeybuf [secureKeyLength]byte // Ephemeral buffer for calculating preimage keys
gctime time.Duration // Time spent on garbage collection since last commit
gcnodes uint64 // Nodes garbage collected since last commit
gcsize common.StorageSize // Data storage garbage collected since last commit
flushtime time.Duration // Time spent on data flushing since last commit
flushnodes uint64 // Nodes flushed since last commit
flushsize common.StorageSize // Data storage flushed since last commit
nodesSize common.StorageSize // Storage size of the nodes cache (exc. flushlist)
preimagesSize common.StorageSize // Storage size of the preimages cache
lock sync.RWMutex
}
// cachedNode is all the information we know about a single cached node in the
// memory database write layer.
type cachedNode struct {
blob []byte // Cached data block of the trie node
parents int // Number of live nodes referencing this one
children map[common.Hash]int // Children referenced by this nodes
flushPrev common.Hash // Previous node in the flush-list
flushNext common.Hash // Next node in the flush-list
}
// NewDatabase creates a new trie database to store ephemeral trie content before
// its written out to disk or garbage collected.
func NewDatabase(diskdb ethdb.Database) *Database {
return &Database{
diskdb: diskdb,
nodes: map[common.Hash]*cachedNode{
{}: {children: make(map[common.Hash]int)},
},
preimages: make(map[common.Hash][]byte),
}
}
// DiskDB retrieves the persistent storage backing the trie database.
func (db *Database) DiskDB() DatabaseReader {
return db.diskdb
}
// Insert writes a new trie node to the memory database if it's yet unknown. The
// method will make a copy of the slice.
func (db *Database) Insert(hash common.Hash, blob []byte) {
db.lock.Lock()
defer db.lock.Unlock()
db.insert(hash, blob)
}
// insert is the private locked version of Insert.
func (db *Database) insert(hash common.Hash, blob []byte) {
// If the node's already cached, skip
if _, ok := db.nodes[hash]; ok {
return
}
db.nodes[hash] = &cachedNode{
blob: common.CopyBytes(blob),
children: make(map[common.Hash]int),
flushPrev: db.newest,
}
// Update the flush-list endpoints
if db.oldest == (common.Hash{}) {
db.oldest, db.newest = hash, hash
} else {
db.nodes[db.newest].flushNext, db.newest = hash, hash
}
db.nodesSize += common.StorageSize(common.HashLength + len(blob))
}
// insertPreimage writes a new trie node pre-image to the memory database if it's
// yet unknown. The method will make a copy of the slice.
//
// Note, this method assumes that the database's lock is held!
func (db *Database) insertPreimage(hash common.Hash, preimage []byte) {
if _, ok := db.preimages[hash]; ok {
return
}
db.preimages[hash] = common.CopyBytes(preimage)
db.preimagesSize += common.StorageSize(common.HashLength + len(preimage))
}
// Node retrieves a cached trie node from memory. If it cannot be found cached,
// the method queries the persistent database for the content.
func (db *Database) Node(hash common.Hash) ([]byte, error) {
// Retrieve the node from cache if available
db.lock.RLock()
node := db.nodes[hash]
db.lock.RUnlock()
if node != nil {
return node.blob, nil
}
// Content unavailable in memory, attempt to retrieve from disk
return db.diskdb.Get(hash[:])
}
// preimage retrieves a cached trie node pre-image from memory. If it cannot be
// found cached, the method queries the persistent database for the content.
func (db *Database) preimage(hash common.Hash) ([]byte, error) {
// Retrieve the node from cache if available
db.lock.RLock()
preimage := db.preimages[hash]
db.lock.RUnlock()
if preimage != nil {
return preimage, nil
}
// Content unavailable in memory, attempt to retrieve from disk
return db.diskdb.Get(db.secureKey(hash[:]))
}
// secureKey returns the database key for the preimage of key, as an ephemeral
// buffer. The caller must not hold onto the return value because it will become
// invalid on the next call.
func (db *Database) secureKey(key []byte) []byte {
buf := append(db.seckeybuf[:0], secureKeyPrefix...)
buf = append(buf, key...)
return buf
}
// Nodes retrieves the hashes of all the nodes cached within the memory database.
// This method is extremely expensive and should only be used to validate internal
// states in test code.
func (db *Database) Nodes() []common.Hash {
db.lock.RLock()
defer db.lock.RUnlock()
var hashes = make([]common.Hash, 0, len(db.nodes))
for hash := range db.nodes {
if hash != (common.Hash{}) { // Special case for "root" references/nodes
hashes = append(hashes, hash)
}
}
return hashes
}
// Reference adds a new reference from a parent node to a child node.
func (db *Database) Reference(child common.Hash, parent common.Hash) {
db.lock.RLock()
defer db.lock.RUnlock()
db.reference(child, parent)
}
// reference is the private locked version of Reference.
func (db *Database) reference(child common.Hash, parent common.Hash) {
// If the node does not exist, it's a node pulled from disk, skip
node, ok := db.nodes[child]
if !ok {
return
}
// If the reference already exists, only duplicate for roots
if _, ok = db.nodes[parent].children[child]; ok && parent != (common.Hash{}) {
return
}
node.parents++
db.nodes[parent].children[child]++
}
// Dereference removes an existing reference from a parent node to a child node.
func (db *Database) Dereference(child common.Hash, parent common.Hash) {
db.lock.Lock()
defer db.lock.Unlock()
nodes, storage, start := len(db.nodes), db.nodesSize, time.Now()
db.dereference(child, parent)
db.gcnodes += uint64(nodes - len(db.nodes))
db.gcsize += storage - db.nodesSize
db.gctime += time.Since(start)
memcacheGCTimeTimer.Update(time.Since(start))
memcacheGCSizeMeter.Mark(int64(storage - db.nodesSize))
memcacheGCNodesMeter.Mark(int64(nodes - len(db.nodes)))
log.Debug("Dereferenced trie from memory database", "nodes", nodes-len(db.nodes), "size", storage-db.nodesSize, "time", time.Since(start),
"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.nodes), "livesize", db.nodesSize)
}
// dereference is the private locked version of Dereference.
func (db *Database) dereference(child common.Hash, parent common.Hash) {
// Dereference the parent-child
node := db.nodes[parent]
node.children[child]--
if node.children[child] == 0 {
delete(node.children, child)
}
// If the child does not exist, it's a previously committed node.
node, ok := db.nodes[child]
if !ok {
return
}
// If there are no more references to the child, delete it and cascade
node.parents--
if node.parents == 0 {
// Remove the node from the flush-list
if child == db.oldest {
db.oldest = node.flushNext
} else {
db.nodes[node.flushPrev].flushNext = node.flushNext
db.nodes[node.flushNext].flushPrev = node.flushPrev
}
// Dereference all children and delete the node
for hash := range node.children {
db.dereference(hash, child)
}
delete(db.nodes, child)
db.nodesSize -= common.StorageSize(common.HashLength + len(node.blob))
}
}
// Cap iteratively flushes old but still referenced trie nodes until the total
// memory usage goes below the given threshold.
func (db *Database) Cap(limit common.StorageSize) error {
// Create a database batch to flush persistent data out. It is important that
// outside code doesn't see an inconsistent state (referenced data removed from
// memory cache during commit but not yet in persistent storage). This is ensured
// by only uncaching existing data when the database write finalizes.
db.lock.RLock()
nodes, storage, start := len(db.nodes), db.nodesSize, time.Now()
batch := db.diskdb.NewBatch()
// db.nodesSize only contains the useful data in the cache, but when reporting
// the total memory consumption, the maintenance metadata is also needed to be
// counted. For every useful node, we track 2 extra hashes as the flushlist.
size := db.nodesSize + common.StorageSize((len(db.nodes)-1)*2*common.HashLength)
// If the preimage cache got large enough, push to disk. If it's still small
// leave for later to deduplicate writes.
flushPreimages := db.preimagesSize > 4*1024*1024
if flushPreimages {
for hash, preimage := range db.preimages {
if err := batch.Put(db.secureKey(hash[:]), preimage); err != nil {
log.Error("Failed to commit preimage from trie database", "err", err)
db.lock.RUnlock()
return err
}
if batch.ValueSize() > ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
db.lock.RUnlock()
return err
}
batch.Reset()
}
}
}
// Keep committing nodes from the flush-list until we're below allowance
oldest := db.oldest
for size > limit && oldest != (common.Hash{}) {
// Fetch the oldest referenced node and push into the batch
node := db.nodes[oldest]
if err := batch.Put(oldest[:], node.blob); err != nil {
db.lock.RUnlock()
return err
}
// If we exceeded the ideal batch size, commit and reset
if batch.ValueSize() >= ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
log.Error("Failed to write flush list to disk", "err", err)
db.lock.RUnlock()
return err
}
batch.Reset()
}
// Iterate to the next flush item, or abort if the size cap was achieved. Size
// is the total size, including both the useful cached data (hash -> blob), as
// well as the flushlist metadata (2*hash). When flushing items from the cache,
// we need to reduce both.
size -= common.StorageSize(3*common.HashLength + len(node.blob))
oldest = node.flushNext
}
// Flush out any remainder data from the last batch
if err := batch.Write(); err != nil {
log.Error("Failed to write flush list to disk", "err", err)
db.lock.RUnlock()
return err
}
db.lock.RUnlock()
// Write successful, clear out the flushed data
db.lock.Lock()
defer db.lock.Unlock()
if flushPreimages {
db.preimages = make(map[common.Hash][]byte)
db.preimagesSize = 0
}
for db.oldest != oldest {
node := db.nodes[db.oldest]
delete(db.nodes, db.oldest)
db.oldest = node.flushNext
db.nodesSize -= common.StorageSize(common.HashLength + len(node.blob))
}
if db.oldest != (common.Hash{}) {
db.nodes[db.oldest].flushPrev = common.Hash{}
}
db.flushnodes += uint64(nodes - len(db.nodes))
db.flushsize += storage - db.nodesSize
db.flushtime += time.Since(start)
memcacheFlushTimeTimer.Update(time.Since(start))
memcacheFlushSizeMeter.Mark(int64(storage - db.nodesSize))
memcacheFlushNodesMeter.Mark(int64(nodes - len(db.nodes)))
log.Debug("Persisted nodes from memory database", "nodes", nodes-len(db.nodes), "size", storage-db.nodesSize, "time", time.Since(start),
"flushnodes", db.flushnodes, "flushsize", db.flushsize, "flushtime", db.flushtime, "livenodes", len(db.nodes), "livesize", db.nodesSize)
return nil
}
// Commit iterates over all the children of a particular node, writes them out
// to disk, forcefully tearing down all references in both directions.
//
// As a side effect, all pre-images accumulated up to this point are also written.
func (db *Database) Commit(node common.Hash, report bool) error {
// Create a database batch to flush persistent data out. It is important that
// outside code doesn't see an inconsistent state (referenced data removed from
// memory cache during commit but not yet in persistent storage). This is ensured
// by only uncaching existing data when the database write finalizes.
db.lock.RLock()
start := time.Now()
batch := db.diskdb.NewBatch()
// Move all of the accumulated preimages into a write batch
for hash, preimage := range db.preimages {
if err := batch.Put(db.secureKey(hash[:]), preimage); err != nil {
log.Error("Failed to commit preimage from trie database", "err", err)
db.lock.RUnlock()
return err
}
if batch.ValueSize() > ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
return err
}
batch.Reset()
}
}
// Move the trie itself into the batch, flushing if enough data is accumulated
nodes, storage := len(db.nodes), db.nodesSize
if err := db.commit(node, batch); err != nil {
log.Error("Failed to commit trie from trie database", "err", err)
db.lock.RUnlock()
return err
}
// Write batch ready, unlock for readers during persistence
if err := batch.Write(); err != nil {
log.Error("Failed to write trie to disk", "err", err)
db.lock.RUnlock()
return err
}
db.lock.RUnlock()
// Write successful, clear out the flushed data
db.lock.Lock()
defer db.lock.Unlock()
db.preimages = make(map[common.Hash][]byte)
db.preimagesSize = 0
db.uncache(node)
memcacheCommitTimeTimer.Update(time.Since(start))
memcacheCommitSizeMeter.Mark(int64(storage - db.nodesSize))
memcacheCommitNodesMeter.Mark(int64(nodes - len(db.nodes)))
logger := log.Info
if !report {
logger = log.Debug
}
logger("Persisted trie from memory database", "nodes", nodes-len(db.nodes)+int(db.flushnodes), "size", storage-db.nodesSize+db.flushsize, "time", time.Since(start)+db.flushtime,
"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.nodes), "livesize", db.nodesSize)
// Reset the garbage collection statistics
db.gcnodes, db.gcsize, db.gctime = 0, 0, 0
db.flushnodes, db.flushsize, db.flushtime = 0, 0, 0
return nil
}
// commit is the private locked version of Commit.
func (db *Database) commit(hash common.Hash, batch ethdb.Batch) error {
// If the node does not exist, it's a previously committed node
node, ok := db.nodes[hash]
if !ok {
return nil
}
for child := range node.children {
if err := db.commit(child, batch); err != nil {
return err
}
}
if err := batch.Put(hash[:], node.blob); err != nil {
return err
}
// If we've reached an optimal batch size, commit and start over
if batch.ValueSize() >= ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
return err
}
batch.Reset()
}
return nil
}
// uncache is the post-processing step of a commit operation where the already
// persisted trie is removed from the cache. The reason behind the two-phase
// commit is to ensure consistent data availability while moving from memory
// to disk.
func (db *Database) uncache(hash common.Hash) {
// If the node does not exist, we're done on this path
node, ok := db.nodes[hash]
if !ok {
return
}
// Node still exists, remove it from the flush-list
if hash == db.oldest {
db.oldest = node.flushNext
} else {
db.nodes[node.flushPrev].flushNext = node.flushNext
db.nodes[node.flushNext].flushPrev = node.flushPrev
}
// Uncache the node's subtries and remove the node itself too
for child := range node.children {
db.uncache(child)
}
delete(db.nodes, hash)
db.nodesSize -= common.StorageSize(common.HashLength + len(node.blob))
}
// Size returns the current storage size of the memory cache in front of the
// persistent database layer.
func (db *Database) Size() (common.StorageSize, common.StorageSize) {
db.lock.RLock()
defer db.lock.RUnlock()
// db.nodesSize only contains the useful data in the cache, but when reporting
// the total memory consumption, the maintenance metadata is also needed to be
// counted. For every useful node, we track 2 extra hashes as the flushlist.
var flushlistSize = common.StorageSize((len(db.nodes) - 1) * 2 * common.HashLength)
return db.nodesSize + flushlistSize, db.preimagesSize
}
|