aboutsummaryrefslogtreecommitdiffstats
path: root/e-util/e-event.h
Commit message (Expand)AuthorAgeFilesLines
* A profiling plugin hook.Not Zed2005-04-281-1/+0
* removed, code moved into camel-net-utils.[ch].Not Zed2004-12-031-1/+1
* Merged notzed-eplugin-2-branch to head.Michael Zucci2004-09-201-0/+238
1' href='#n51'>51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
.. index:: ! contract

##########
Contracts
##########

Contracts in Solidity are what classes are in object oriented languages. They
contain persistent data in state variables and functions that can modify these
variables. Calling a function on a different contract (instance) will perform
an EVM function call and thus switch the context such that state variables are
inaccessible.

.. index:: ! contract;creation

******************
Creating Contracts
******************

Contracts can be created "from outside" or from Solidity contracts.
When a contract is created, its constructor (a function with the same
name as the contract) is executed once.

From ``web3.js``, i.e. the JavaScript
API, this is done as follows::

    // Need to specify some source including contract name for the data param below
    var source = "contract CONTRACT_NAME { function CONTRACT_NAME(unit a, uint b) {} }";

    // The json abi array generated by the compiler
    var abiArray = [
        {
            "inputs":[
                {"name":"x","type":"uint256"},
                {"name":"y","type":"uint256"}
            ],
            "type":"constructor"
        },
        {
            "constant":true,
            "inputs":[],
            "name":"x",
            "outputs":[{"name":"","type":"bytes32"}],
            "type":"function"
        }
    ];

    var MyContract_ = web3.eth.contract(source);
    MyContract = web3.eth.contract(MyContract_.CONTRACT_NAME.info.abiDefinition);
    // deploy new contract
    var contractInstance = MyContract.new(
        10,
        11,
        {from: myAccount, gas: 1000000}
    );

.. index:: constructor;arguments

Internally, constructor arguments are passed after the code of
the contract itself, but you do not have to care about this
if you use ``web3.js``.

If a contract wants to create another contract, the source code
(and the binary) of the created contract has to be known to the creator.
This means that cyclic creation dependencies are impossible.

::

    contract OwnedToken {
        // TokenCreator is a contract type that is defined below.
        // It is fine to reference it as long as it is not used
        // to create a new contract.
        TokenCreator creator;
        address owner;
        bytes32 name;

        // This is the constructor which registers the
        // creator and the assigned name.
        function OwnedToken(bytes32 _name) {
            owner = msg.sender;
            // We do an explicit type conversion from `address`
            // to `TokenCreator` and assume that the type of
            // the calling contract is TokenCreator, there is
            // no real way to check that.
            creator = TokenCreator(msg.sender);
            name = _name;
        }

        function changeName(bytes32 newName) {
            // Only the creator can alter the name --
            // the comparison is possible since contracts
            // are implicitly convertible to addresses.
            if (msg.sender == address(creator))
                name = newName;
        }

        function transfer(address newOwner) {
            // Only the current owner can transfer the token.
            if (msg.sender != owner) return;
            // We also want to ask the creator if the transfer
            // is fine. Note that this calls a function of the
            // contract defined below. If the call fails (e.g.
            // due to out-of-gas), the execution here stops
            // immediately.
            if (creator.isTokenTransferOK(owner, newOwner))
                owner = newOwner;
        }
    }

    contract TokenCreator {
        function createToken(bytes32 name)
           returns (OwnedToken tokenAddress)
        {
            // Create a new Token contract and return its address.
            // From the JavaScript side, the return type is simply
            // "address", as this is the closest type available in
            // the ABI.
            return new OwnedToken(name);
        }

        function changeName(OwnedToken tokenAddress, bytes32 name) {
            // Again, the external type of "tokenAddress" is
            // simply "address".
            tokenAddress.changeName(name);
        }

        function isTokenTransferOK(
            address currentOwner,
            address newOwner
        ) returns (bool ok) {
            // Check some arbitrary condition.
            address tokenAddress = msg.sender;
            return (sha3(newOwner) & 0xff) == (bytes20(tokenAddress) & 0xff);
        }
    }

.. index:: ! visibility, external, public, private, internal

.. _visibility-and-accessors:

************************
Visibility and Accessors
************************

Since Solidity knows two kinds of function calls (internal
ones that do not create an actual EVM call (also called
a "message call") and external
ones that do), there are four types of visibilities for
functions and state variables.

Functions can be specified as being ``external``,
``public``, ``internal`` or ``private``, where the default is
``public``. For state variables, ``external`` is not possible
and the default is ``internal``.

``external``:
    External functions are part of the contract
    interface, which means they can be called from other contracts and
    via transactions. An external function ``f`` cannot be called
    internally (i.e. ``f()`` does not work, but ``this.f()`` works).
    External functions are sometimes more efficient when
    they receive large arrays of data.

``public``:
    Public functions are part of the contract
    interface and can be either called internally or via
    messages. For public state variables, an automatic accessor
    function (see below) is generated.

``internal``:
    Those functions and state variables can only be
    accessed internally (i.e. from within the current contract
    or contracts deriving from it), without using ``this``.

``private``:
    Private functions and state variables are only
    visible for the contract they are defined in and not in
    derived contracts.

.. note::
    Everything that is inside a contract is visible to
    all external observers. Making something ``private``
    only prevents other contracts from accessing and modifying
    the information, but it will still be visible to the
    whole world outside of the blockchain.

The visibility specifier is given after the type for
state variables and between parameter list and
return parameter list for functions.

::

    contract C {
        function f(uint a) private returns (uint b) { return a + 1; }
        function setData(uint a) internal { data = a; }
        uint public data;
    }

In the following example, ``D``, can call ``c.getData()`` to retrieve the value of
``data`` in state storage, but is not able to call ``f``. Contract ``E`` is derived from
``C`` and, thus, can call ``compute``.

::

    contract C {
        uint private data;

        function f(uint a) private returns(uint b) { return a + 1; }
        function setData(uint a) { data = a; }
        function getData() public returns(uint) { return data; }
        function compute(uint a, uint b) internal returns (uint) { return a+b; }
    }


    contract D {
        function readData() {
            C c = new C();
            uint local = c.f(7); // error: member "f" is not visible
            c.setData(3);
            local = c.getData();
            local = c.compute(3, 5); // error: member "compute" is not visible
        }
    }


    contract E is C {
        function g() {
            C c = new C();
            uint val = compute(3, 5);  // acces to internal member (from derivated to parent contract)
        }
    }

.. index:: ! accessor;function, ! function;accessor

Accessor Functions
==================

The compiler automatically creates accessor functions for
all public state variables. For the contract given below, the compiler will
generate a function called ``data`` that does not take any
arguments and returns a ``uint``, the value of the state
variable ``data``. The initialization of state variables can
be done at declaration.

::

    contract C {
        uint public data = 42;
    }


    contract Caller {
        C c = new C();
        function f() {
            uint local = c.data();
        }
    }

The accessor functions have external visibility. If the
symbol is accessed internally (i.e. without ``this.``),
it is evaluated as a state variable and if it is accessed externally
(i.e. with ``this.``), it is evaluated as a function.

::

    contract C {
        uint public data;
        function x() {
            data = 3; // internal access
            uint val = this.data(); // external access
        }
    }

The next example is a bit more complex:

::

    contract Complex {
        struct Data {
            uint a;
            bytes3 b;
            mapping (uint => uint) map;
        }
        mapping (uint => mapping(bool => Data[])) public data;
    }

It will generate a function of the following form::

    function data(uint arg1, bool arg2, uint arg3) returns (uint a, bytes3 b) {
        a = data[arg1][arg2][arg3].a;
        b = data[arg1][arg2][arg3].b;
    }

Note that the mapping in the struct is omitted because there
is no good way to provide the key for the mapping.

.. index:: ! function;modifier

.. _modifiers:

******************
Function Modifiers
******************

Modifiers can be used to easily change the behaviour of functions, for example
to automatically check a condition prior to executing the function. They are
inheritable properties of contracts and may be overridden by derived contracts.

::

    contract owned {
        function owned() { owner = msg.sender; }
        address owner;

        // This contract only defines a modifier but does not use
        // it - it will be used in derived contracts.
        // The function body is inserted where the special symbol
        // "_" in the definition of a modifier appears.
        // This means that if the owner calls this function, the
        // function is executed and otherwise, an exception is
        // thrown.
        modifier onlyOwner {
            if (msg.sender != owner)
                throw;
            _
        }
    }


    contract mortal is owned {
        // This contract inherits the "onlyOwner"-modifier from
        // "owned" and applies it to the "close"-function, which
        // causes that calls to "close" only have an effect if
        // they are made by the stored owner.
        function close() onlyOwner {
            selfdestruct(owner);
        }
    }


    contract priced {
        // Modifiers can receive arguments:
        modifier costs(uint price) {
            if (msg.value >= price) {
                _
            }
        }
    }


    contract Register is priced, owned {
        mapping (address => bool) registeredAddresses;
        uint price;

        function Register(uint initialPrice) { price = initialPrice; }

        function register() costs(price) {
            registeredAddresses[msg.sender] = true;
        }

        function changePrice(uint _price) onlyOwner {
            price = _price;
        }
    }

    contract Mutex {
        bool locked;
        modifier noReentrancy() {
            if (locked) throw;
            locked = true;
            _
            locked = false;
        }

        /// This function is protected by a mutex, which means that
        /// reentrant calls from within msg.sender.call cannot call f again.
        /// The `return 7` statement assigns 7 to the return value but still
        /// executes the statement `locked = false` in the modifier.
        function f() noReentrancy returns (uint) {
            if (!msg.sender.call()) throw;
            return 7;
        }
    }

Multiple modifiers can be applied to a function by specifying them in a
whitespace-separated list and will be evaluated in order.

.. warning::
    In an earlier version of Solidity, ``return`` statements in functions
    having modifiers behaved differently.

Explicit returns from a modifier or function body only leave the current
modifier or function body. Return variables are assigned and
control flow continues after the "_" in the preceding modifier.

Arbitrary expressions are allowed for modifier arguments and in this context,
all symbols visible from the function are visible in the modifier. Symbols
introduced in the modifier are not visible in the function (as they might
change by overriding).

.. index:: ! constant

**********
Constants
**********

State variables can be declared as constant (this is not yet implemented
for array and struct types and not possible for mapping types).

::

    contract C {
        uint constant x = 32**22 + 8;
        string constant text = "abc";
    }

This has the effect that the compiler does not reserve a storage slot
for these variables and every occurrence is replaced by their constant value.

The value expression can only contain integer arithmetics.


.. index:: ! fallback function, function;fallback

.. _fallback-function:

*****************
Fallback Function
*****************

A contract can have exactly one unnamed function. This function cannot have
arguments and cannot return anything.
It is executed on a call to the contract if none of the other
functions matches the given function identifier (or if no data was supplied at
all).

Furthermore, this function is executed whenever the contract receives plain
Ether (without data).  In such a context, there is very little gas available to
the function call (to be precise, 2300 gas), so it is important to make fallback functions as cheap as
possible.

In particular, the following operations will consume more gas than the stipend provided to a fallback function:

- Writing to storage
- Creating a contract
- Calling an external function which consumes a large amount of gas
- Sending Ether

Please ensure you test your fallback function thoroughly to ensure the execution cost is less than 2300 gas before deploying a contract.

::

    contract Test {
        function() { x = 1; }
        uint x;
    }


    // This contract rejects any Ether sent to it. It is good
    // practise to include such a function for every contract
    // in order not to lose Ether.
    contract Rejector {
        function() { throw; }
    }


    contract Caller {
        function callTest(address testAddress) {
            Test(testAddress).call(0xabcdef01); // hash does not exist
            // results in Test(testAddress).x becoming == 1.
            Rejector r = Rejector(0x123);
            r.send(2 ether);
            // results in r.balance == 0
        }
    }

.. index:: ! event

.. _events:

******
Events
******

Events allow the convenient usage of the EVM logging facilities,
which in turn can be used to "call" JavaScript callbacks in the user interface
of a dapp, which listen for these events.

Events are
inheritable members of contracts. When they are called, they cause the
arguments to be stored in the transaction's log - a special data structure
in the blockchain. These logs are associated with the address of
the contract and will be incorporated into the blockchain
and stay there as long as a block is accessible (forever as of
Frontier and Homestead, but this might change with Serenity). Log and
event data is not accessible from within contracts (not even from
the contract that created a log).

SPV proofs for logs are possible, so if an external entity supplies
a contract with such a proof, it can check that the log actually
exists inside the blockchain (but be aware of the fact that
ultimately, also the block headers have to be supplied because
the contract can only see the last 256 block hashes).

Up to three parameters can
receive the attribute ``indexed`` which will cause the respective arguments
to be searched for: It is possible to filter for specific values of
indexed arguments in the user interface.

If arrays (including ``string`` and ``bytes``) are used as indexed arguments, the
sha3-hash of it is stored as topic instead.

The hash of the signature of the event is one of the topics except if you
declared the event with ``anonymous`` specifier. This means that it is
not possible to filter for specific anonymous events by name.

All non-indexed arguments will be stored in the data part of the log.

::

    contract ClientReceipt {
        event Deposit(
            address indexed _from,
            bytes32 indexed _id,
            uint _value
        );

        function deposit(bytes32 _id) {
            // Any call to this function (even deeply nested) can
            // be detected from the JavaScript API by filtering
            // for `Deposit` to be called.
            Deposit(msg.sender, _id, msg.value);
        }
    }

The use in the JavaScript API would be as follows:

::

    var abi = /* abi as generated by the compiler */;
    var ClientReceipt = web3.eth.contract(abi);
    var clientReceipt = ClientReceipt.at(0x123 /* address */);

    var event = clientReceipt.Deposit();

    // watch for changes
    event.watch(function(error, result){
        // result will contain various information
        // including the argumets given to the Deposit
        // call.
        if (!error)
            console.log(result);
    });

    // Or pass a callback to start watching immediately
    var event = clientReceipt.Deposit(function(error, result) {
        if (!error)
            console.log(result);
    });

.. index:: ! log

Low-Level Interface to Logs
===========================

It is also possible to access the low-level interface to the logging
mechanism via the functions ``log0``, ``log1``, ``log2``, ``log3`` and ``log4``.
``logi`` takes ``i + 1`` parameter of type ``bytes32``, where the first
argument will be used for the data part of the log and the others
as topics. The event call above can be performed in the same way as

::

    log3(
        msg.value,
        0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20,
        msg.sender,
        _id
    );

where the long hexadecimal number is equal to
``sha3("Deposit(address,hash256,uint256)")``, the signature of the event.

Additional Resources for Understanding Events
==============================================

- `Javascript documentation <https://github.com/ethereum/wiki/wiki/JavaScript-API#contract-events>`_
- `Example usage of events <https://github.com/debris/smart-exchange/blob/master/lib/contracts/SmartExchange.sol>`_
- `How to access them in js <https://github.com/debris/smart-exchange/blob/master/lib/exchange_transactions.js>`_

.. index:: ! inheritance, ! base class, ! contract;base, ! deriving

***********
Inheritance
***********

Solidity supports multiple inheritance by copying code including polymorphism.

All function calls are virtual, which means that the most derived function
is called, except when the contract is explicitly given.

Even if a contract inherits from multiple other contracts, only a single
contract is created on the blockchain, the code from the base contracts
is always copied into the final contract.

The general inheritance system is very similar to
`Python's <https://docs.python.org/3/tutorial/classes.html#inheritance>`_,
especially concerning multiple inheritance.

Details are given in the following example.

::

    contract owned {
        function owned() { owner = msg.sender; }
        address owner;
    }


    // Use "is" to derive from another contract. Derived
    // contracts can access all non-private members including
    // internal functions and state variables. These cannot be
    // accessed externally via `this`, though.
    contract mortal is owned {
        function kill() {
            if (msg.sender == owner) selfdestruct(owner);
        }
    }


    // These abstract contracts are only provided to make the
    // interface known to the compiler. Note the function
    // without body. If a contract does not implement all
    // functions it can only be used as an interface.
    contract Config {
        function lookup(uint id) returns (address adr);
    }


    contract NameReg {
        function register(bytes32 name);
        function unregister();
     }


    // Multiple inheritance is possible. Note that "owned" is
    // also a base class of "mortal", yet there is only a single
    // instance of "owned" (as for virtual inheritance in C++).
    contract named is owned, mortal {
        function named(bytes32 name) {
            Config config = Config(0xd5f9d8d94886e70b06e474c3fb14fd43e2f23970);
            NameReg(config.lookup(1)).register(name);
        }

        // Functions can be overridden, both local and
        // message-based function calls take these overrides
        // into account.
        function kill() {
            if (msg.sender == owner) {
                Config config = Config(0xd5f9d8d94886e70b06e474c3fb14fd43e2f23970);
                NameReg(config.lookup(1)).unregister();
                // It is still possible to call a specific
                // overridden function.
                mortal.kill();
            }
        }
    }


    // If a constructor takes an argument, it needs to be
    // provided in the header (or modifier-invocation-style at
    // the constructor of the derived contract (see below)).
    contract PriceFeed is owned, mortal, named("GoldFeed") {
       function updateInfo(uint newInfo) {
          if (msg.sender == owner) info = newInfo;
       }

       function get() constant returns(uint r) { return info; }

       uint info;
    }

Note that above, we call ``mortal.kill()`` to "forward" the
destruction request. The way this is done is problematic, as
seen in the following example::

    contract mortal is owned {
        function kill() {
            if (msg.sender == owner) selfdestruct(owner);
        }
    }


    contract Base1 is mortal {
        function kill() { /* do cleanup 1 */ mortal.kill(); }
    }


    contract Base2 is mortal {
        function kill() { /* do cleanup 2 */ mortal.kill(); }
    }


    contract Final is Base1, Base2 {
    }

A call to ``Final.kill()`` will call ``Base2.kill`` as the most
derived override, but this function will bypass
``Base1.kill``, basically because it does not even know about
``Base1``.  The way around this is to use ``super``::

    contract mortal is owned {
        function kill() {
            if (msg.sender == owner) selfdestruct(owner);
        }
    }


    contract Base1 is mortal {
        function kill() { /* do cleanup 1 */ super.kill(); }
    }


    contract Base2 is mortal {
        function kill() { /* do cleanup 2 */ super.kill(); }
    }


    contract Final is Base2, Base1 {
    }

If ``Base1`` calls a function of ``super``, it does not simply
call this function on one of its base contracts, it rather
calls this function on the next base contract in the final
inheritance graph, so it will call ``Base2.kill()`` (note that
the final inheritance sequence is -- starting with the most
derived contract: Final, Base1, Base2, mortal, owned).
The actual function that is called when using super is
not known in the context of the class where it is used,
although its type is known. This is similar for ordinary
virtual method lookup.

.. index:: ! base;constructor

Arguments for Base Constructors
===============================

Derived contracts need to provide all arguments needed for
the base constructors. This can be done at two places::

    contract Base {
        uint x;
        function Base(uint _x) { x = _x; }
    }


    contract Derived is Base(7) {
        function Derived(uint _y) Base(_y * _y) {
        }
    }

Either directly in the inheritance list (``is Base(7)``) or in
the way a modifier would be invoked as part of the header of
the derived constructor (``Base(_y * _y)``). The first way to
do it is more convenient if the constructor argument is a
constant and defines the behaviour of the contract or
describes it. The second way has to be used if the
constructor arguments of the base depend on those of the
derived contract. If, as in this silly example, both places
are used, the modifier-style argument takes precedence.

.. index:: ! inheritance;multiple, ! linearization, ! C3 linearization

Multiple Inheritance and Linearization
======================================

Languages that allow multiple inheritance have to deal with
several problems, one of them being the `Diamond Problem <https://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem>`_.
Solidity follows the path of Python and uses "`C3 Linearization <https://en.wikipedia.org/wiki/C3_linearization>`_"
to force a specific order in the DAG of base classes. This
results in the desirable property of monotonicity but
disallows some inheritance graphs. Especially, the order in
which the base classes are given in the ``is`` directive is
important. In the following code, Solidity will give the
error "Linearization of inheritance graph impossible".

::

    contract X {}
    contract A is X {}
    contract C is A, X {}

The reason for this is that ``C`` requests ``X`` to override ``A``
(by specifying ``A, X`` in this order), but ``A`` itself
requests to override ``X``, which is a contradiction that
cannot be resolved.

A simple rule to remember is to specify the base classes in
the order from "most base-like" to "most derived".

.. index:: ! contract;abstract, ! abstract contract

******************
Abstract Contracts
******************

Contract functions can lack an implementation as in the following example (note that the function declaration header is terminated by ``;``)::

    contract Feline {
        function utterance() returns (bytes32);
    }

Such contracts cannot be compiled (even if they contain implemented functions alongside non-implemented functions), but they can be used as base contracts::

    contract Cat is Feline {
        function utterance() returns (bytes32) { return "miaow"; }
    }

If a contract inherits from an abstract contract and does not implement all non-implemented functions by overriding, it will itself be abstract.

.. index:: ! library, callcode, delegatecall

.. _libraries:

************
Libraries
************

Libraries are similar to contracts, but their purpose is that they are deployed
only once at a specific address and their code is reused using the ``DELEGATECALL``
(``CALLCODE`` until Homestead)
feature of the EVM. This means that if library functions are called, their code
is executed in the context of the calling contract, i.e. ``this`` points to the
calling contract, and especially the storage from the calling contract can be
accessed. As a library is an isolated piece of source code, it can only access
state variables of the calling contract if they are explicitly supplied (it
would have no way to name them, otherwise).

Libraries can be seen as implicit base contracts of the contracts that use them.
They will not be explicitly visible in the inheritance hierarchy, but calls
to library functions look just like calls to functions of explicit base
contracts (``L.f()`` if ``L`` is the name of the library). Furthermore,
``internal`` functions of libraries are visible in all contracts, just as
if the library were a base contract. Of course, calls to internal functions
use the internal calling convention, which means that all internal types
can be passed and memory types will be passed by reference and not copied.
In order to realise this in the EVM, code of internal library functions
(and all functions called from therein) will be pulled into the calling
contract and a regular ``JUMP`` call will be used instead of a ``DELEGATECALL``.

.. index:: using for, set

The following example illustrates how to use libraries (but
be sure to check out :ref:`using for <using-for>` for a
more advanced example to implement a set).

::

    library Set {
      // We define a new struct datatype that will be used to
      // hold its data in the calling contract.
      struct Data { mapping(uint => bool) flags; }

      // Note that the first parameter is of type "storage
      // reference" and thus only its storage address and not
      // its contents is passed as part of the call.  This is a
      // special feature of library functions.  It is idiomatic
      // to call the first parameter 'self', if the function can
      // be seen as a method of that object.
      function insert(Data storage self, uint value)
          returns (bool)
      {
          if (self.flags[value])
              return false; // already there
          self.flags[value] = true;
          return true;
      }

      function remove(Data storage self, uint value)
          returns (bool)
      {
          if (!self.flags[value])
              return false; // not there
          self.flags[value] = false;
          return true;
      }

      function contains(Data storage self, uint value)
          returns (bool)
      {
          return self.flags[value];
      }
    }


    contract C {
        Set.Data knownValues;

        function register(uint value) {
            // The library functions can be called without a
            // specific instance of the library, since the
            // "instance" will be the current contract.
            if (!Set.insert(knownValues, value))
                throw;
        }
        // In this contract, we can also directly access knownValues.flags, if we want.
    }

Of course, you do not have to follow this way to use
libraries - they can also be used without defining struct
data types, functions also work without any storage
reference parameters, can have multiple storage reference
parameters and in any position.

The calls to ``Set.contains``, ``Set.insert`` and ``Set.remove``
are all compiled as calls (``DELEGATECALL``) to an external
contract/library. If you use libraries, take care that an
actual external function call is performed.
``msg.sender``, ``msg.value`` and ``this`` will retain their values
in this call, though (prior to Homestead, ``msg.sender`` and
``msg.value`` changed, though).

The following example shows how to use memory types and
internal functions in libraries in order to implement
custom types without the overhead of external function calls:

::

    library BigInt {
        struct bigint {
            uint[] limbs;
        }

        function fromUint(uint x) internal returns (bigint r) {
            r.limbs = new uint[](1);
            r.limbs[0] = x;
        }

        function add(bigint _a, bigint _b) internal returns (bigint r) {
            r.limbs = new uint[](max(_a.limbs.length, _b.limbs.length));
            uint carry = 0;
            for (uint i = 0; i < r.limbs.length; ++i) {
                uint a = limb(_a, i);
                uint b = limb(_b, i);
                r.limbs[i] = a + b + carry;
                if (a + b < a || (a + b == uint(-1) && carry > 0))
                    carry = 1;
                else
                    carry = 0;
            }
            if (carry > 0) {
                // too bad, we have to add a limb
                uint[] memory newLimbs = new uint[](r.limbs.length + 1);
                for (i = 0; i < r.limbs.length; ++i)
                    newLimbs[i] = r.limbs[i];
                newLimbs[i] = carry;
                r.limbs = newLimbs;
            }
        }

        function limb(bigint _a, uint _limb) internal returns (uint) {
            return _limb < _a.limbs.length ? _a.limbs[_limb] : 0;
        }

        function max(uint a, uint b) private returns (uint) {
            return a > b ? a : b;
        }
    }


    contract C {
        using BigInt for BigInt.bigint;

        function f() {
            var x = BigInt.fromUint(7);
            var y = BigInt.fromUint(uint(-1));
            var z = x.add(y);
        }
    }

As the compiler cannot know where the library will be
deployed at, these addresses have to be filled into the
final bytecode by a linker
(see :ref:`commandline-compiler` for how to use the
commandline compiler for linking). If the addresses are not
given as arguments to the compiler, the compiled hex code
will contain placeholders of the form ``__Set______`` (where
``Set`` is the name of the library). The address can be filled
manually by replacing all those 40 symbols by the hex
encoding of the address of the library contract.

Restrictions for libraries in comparison to contracts:

- No state variables
- Cannot inherit nor be inherited
- Cannot recieve Ether

(These might be lifted at a later point.)

.. index:: ! using for, library

.. _using-for:

*********
Using For
*********

The directive ``using A for B;`` can be used to attach library
functions (from the library ``A``) to any type (``B``).
These functions will receive the object they are called on
as their first parameter (like the ``self`` variable in
Python).

The effect of ``using A for *;`` is that the functions from
the library ``A`` are attached to any type.

In both situations, all functions, even those where the
type of the first parameter does not match the type of
the object, are attached. The type is checked at the
point the function is called and function overload
resolution is performed.

The ``using A for B;`` directive is active for the current
scope, which is limited to a contract for now but will
be lifted to the global scope later, so that by including
a module, its data types including library functions are
available without having to add further code.

Let us rewrite the set example from the
:ref:`libraries` in this way::

    // This is the same code as before, just without comments
    library Set {
      struct Data { mapping(uint => bool) flags; }

      function insert(Data storage self, uint value)
          returns (bool)
      {
          if (self.flags[value])
            return false; // already there
          self.flags[value] = true;
          return true;
      }

      function remove(Data storage self, uint value)
          returns (bool)
      {
          if (!self.flags[value])
              return false; // not there
          self.flags[value] = false;
          return true;
      }

      function contains(Data storage self, uint value)
          returns (bool)
      {
          return self.flags[value];
      }
    }


    contract C {
        using Set for Set.Data; // this is the crucial change
        Set.Data knownValues;

        function register(uint value) {
            // Here, all variables of type Set.Data have
            // corresponding member functions.
            // The following function call is identical to
            // Set.insert(knownValues, value)
            if (!knownValues.insert(value))
                throw;
        }
    }

It is also possible to extend elementary types in that way::

    library Search {
        function indexOf(uint[] storage self, uint value) returns (uint) {
            for (uint i = 0; i < self.length; i++)
                if (self[i] == value) return i;
            return uint(-1);
        }
    }


    contract C {
        using Search for uint[];
        uint[] data;

        function append(uint value) {
            data.push(value);
        }

        function replace(uint _old, uint _new) {
            // This performs the library function call
            uint index = data.indexOf(_old);
            if (index == uint(-1))
                data.push(_new);
            else
                data[index] = _new;
        }
    }

Note that all library calls are actual EVM function calls. This means that
if you pass memory or value types, a copy will be performed, even of the
``self`` variable. The only situation where no copy will be performed
is when storage reference variables are used.