aboutsummaryrefslogtreecommitdiffstats
path: root/doc/latex/classmeow_1_1BallProjection.tex
diff options
context:
space:
mode:
Diffstat (limited to 'doc/latex/classmeow_1_1BallProjection.tex')
-rw-r--r--doc/latex/classmeow_1_1BallProjection.tex406
1 files changed, 0 insertions, 406 deletions
diff --git a/doc/latex/classmeow_1_1BallProjection.tex b/doc/latex/classmeow_1_1BallProjection.tex
deleted file mode 100644
index c541d49..0000000
--- a/doc/latex/classmeow_1_1BallProjection.tex
+++ /dev/null
@@ -1,406 +0,0 @@
-\hypertarget{classmeow_1_1BallProjection}{\section{meow\-:\-:Ball\-Projection$<$ Scalar $>$ Class Template Reference}
-\label{classmeow_1_1BallProjection}\index{meow\-::\-Ball\-Projection$<$ Scalar $>$@{meow\-::\-Ball\-Projection$<$ Scalar $>$}}
-}
-
-
-A ball projection is to project the given vector to a hyper-\/sphere.
-
-
-
-
-{\ttfamily \#include \char`\"{}Transformations.\-h\char`\"{}}
-
-Inheritance diagram for meow\-:\-:Ball\-Projection$<$ Scalar $>$\-:\begin{figure}[H]
-\begin{center}
-\leavevmode
-\includegraphics[height=2.000000cm]{classmeow_1_1BallProjection}
-\end{center}
-\end{figure}
-\subsection*{Public Member Functions}
-\begin{DoxyCompactItemize}
-\item
-\hyperlink{classmeow_1_1BallProjection_a1efa5c200a9d5605453b47e3856ccf28}{Ball\-Projection} (\hyperlink{classmeow_1_1BallProjection}{Ball\-Projection} const \&b)
-\item
-\hyperlink{classmeow_1_1BallProjection_af7e722b66c6bbc7245726902b6849850}{Ball\-Projection} (size\-\_\-t d)
-\item
-\hyperlink{classmeow_1_1BallProjection_a9d9d151e138e50c2bb4cd3d039fb0808}{Ball\-Projection} (size\-\_\-t d, Scalar const \&r)
-\item
-\hyperlink{classmeow_1_1BallProjection}{Ball\-Projection} \& \hyperlink{classmeow_1_1BallProjection_aec71a15af880bdaea8042986c11e2187}{copy\-From} (\hyperlink{classmeow_1_1BallProjection}{Ball\-Projection} const \&b)
-\begin{DoxyCompactList}\small\item\em Copy settings from another one. \end{DoxyCompactList}\item
-\hyperlink{classmeow_1_1BallProjection}{Ball\-Projection} \& \hyperlink{classmeow_1_1BallProjection_adaf8d494c1177664f49bb63a5d2f36b0}{reference\-From} (\hyperlink{classmeow_1_1BallProjection}{Ball\-Projection} const \&b)
-\begin{DoxyCompactList}\small\item\em Reference settings from another one. \end{DoxyCompactList}\item
-Scalar \hyperlink{classmeow_1_1BallProjection_adf2bcb2f82e9f7e2136b187317ba3211}{parameter} (size\-\_\-t i) const
-\begin{DoxyCompactList}\small\item\em same as {\ttfamily \hyperlink{classmeow_1_1BallProjection_a82416bac8768d0f40fc09e8cd3896bc8}{radius()}} \end{DoxyCompactList}\item
-Scalar \hyperlink{classmeow_1_1BallProjection_a288814dc861482dd70129a698b1a2d7e}{parameter} (size\-\_\-t i, Scalar const \&s)
-\begin{DoxyCompactList}\small\item\em same as {\ttfamily radius(s)} \end{DoxyCompactList}\item
-Scalar \hyperlink{classmeow_1_1BallProjection_a82416bac8768d0f40fc09e8cd3896bc8}{radius} () const
-\begin{DoxyCompactList}\small\item\em Return the value of the radius. \end{DoxyCompactList}\item
-Scalar \hyperlink{classmeow_1_1BallProjection_a5e4bbc9cf477002fab2dad6f37e2553c}{radius} (Scalar const \&r)
-\begin{DoxyCompactList}\small\item\em Setup the radius. \end{DoxyCompactList}\item
-size\-\_\-t \hyperlink{classmeow_1_1BallProjection_a3eff2f36a83ba683da6bc9bb82699b30}{dimension} () const
-\begin{DoxyCompactList}\small\item\em Get the dimension of this projection. \end{DoxyCompactList}\item
-\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ \hyperlink{classmeow_1_1BallProjection_a2573c364dd1e0d7de32b1e2afc0bb1b5}{transformate} (\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ const \&x) const
-\begin{DoxyCompactList}\small\item\em Project the input vector(s) onto the hyper-\/sphere and return it. \end{DoxyCompactList}\item
-\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ \hyperlink{classmeow_1_1BallProjection_a4fb7773f5566e93435ba56defbb7efc6}{jacobian} (\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ const \&x) const
-\begin{DoxyCompactList}\small\item\em Return the jacobian matrix (derivate by the input vector) of this projection. \end{DoxyCompactList}\item
-\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ \hyperlink{classmeow_1_1BallProjection_ad2d62da97dd4b527c254e62a1ec949d8}{jacobian} (\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ const \&x, size\-\_\-t i) const
-\begin{DoxyCompactList}\small\item\em Return the jacobian matrix (derivate by radius) of this projection. \end{DoxyCompactList}\item
-\hyperlink{classmeow_1_1BallProjection}{Ball\-Projection} \& \hyperlink{classmeow_1_1BallProjection_a8e7e0ddd31c51bbaa934f77aee760f18}{operator=} (\hyperlink{classmeow_1_1BallProjection}{Ball\-Projection} const \&b)
-\begin{DoxyCompactList}\small\item\em Same as {\ttfamily copy\-From(b)} \end{DoxyCompactList}\item
-\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ \hyperlink{classmeow_1_1BallProjection_a4f2e133f911088b7e13cabc52b3e6b92}{operator()} (\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ const \&v) const
-\begin{DoxyCompactList}\small\item\em Same as {\ttfamily transformate(v)} \end{DoxyCompactList}\end{DoxyCompactItemize}
-\subsection*{Additional Inherited Members}
-
-
-\subsection{Detailed Description}
-\subsubsection*{template$<$class Scalar$>$class meow\-::\-Ball\-Projection$<$ Scalar $>$}
-
-A ball projection is to project the given vector to a hyper-\/sphere.
-
-Assume\-:
-\begin{DoxyItemize}
-\item The dimension of a ball projection is $ N $
-\item The radius of the hyper-\/sphere is $ R $
-\end{DoxyItemize}Then the transformation is like below\-: \par
- \[ \left[ \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ . \\ . \\ . \\ x_N \\ \end{array} \right] \stackrel{transformate}{\rightarrow} \left[ \begin{array}{c} \frac{x_1 \times R}{L} \\ \frac{x_2 \times R}{L} \\ \frac{x_3 \times R}{L} \\ . \\ . \\ . \\ \frac{x_N \times R}{L} \\ \end{array} \right] \\ \] where $ L=\sqrt{x_1^2 + x_2^2 + x_3^2 + ... + x_N^2 } $ \begin{DoxyAuthor}{Author}
-cat\-\_\-leopard
-\end{DoxyAuthor}
-
-
-Definition at line 50 of file Transformations.\-h.
-
-
-
-\subsection{Constructor \& Destructor Documentation}
-\hypertarget{classmeow_1_1BallProjection_a1efa5c200a9d5605453b47e3856ccf28}{\index{meow\-::\-Ball\-Projection@{meow\-::\-Ball\-Projection}!Ball\-Projection@{Ball\-Projection}}
-\index{Ball\-Projection@{Ball\-Projection}!meow::BallProjection@{meow\-::\-Ball\-Projection}}
-\subsubsection[{Ball\-Projection}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ {\bf meow\-::\-Ball\-Projection}$<$ Scalar $>$\-::{\bf Ball\-Projection} (
-\begin{DoxyParamCaption}
-\item[{{\bf Ball\-Projection}$<$ Scalar $>$ const \&}]{b}
-\end{DoxyParamCaption}
-)\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1BallProjection_a1efa5c200a9d5605453b47e3856ccf28}
-Constructor, copy settings from given \hyperlink{classmeow_1_1BallProjection}{Ball\-Projection}
-\begin{DoxyParams}[1]{Parameters}
-\mbox{\tt in} & {\em b} & another ball projection class \\
-\hline
-\end{DoxyParams}
-
-
-Definition at line 72 of file Transformations.\-h.
-
-\hypertarget{classmeow_1_1BallProjection_af7e722b66c6bbc7245726902b6849850}{\index{meow\-::\-Ball\-Projection@{meow\-::\-Ball\-Projection}!Ball\-Projection@{Ball\-Projection}}
-\index{Ball\-Projection@{Ball\-Projection}!meow::BallProjection@{meow\-::\-Ball\-Projection}}
-\subsubsection[{Ball\-Projection}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ {\bf meow\-::\-Ball\-Projection}$<$ Scalar $>$\-::{\bf Ball\-Projection} (
-\begin{DoxyParamCaption}
-\item[{size\-\_\-t}]{d}
-\end{DoxyParamCaption}
-)\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1BallProjection_af7e722b66c6bbc7245726902b6849850}
-Constructor and setup, radius = 1
-\begin{DoxyParams}[1]{Parameters}
-\mbox{\tt in} & {\em d} & Dimension of the input/output vector \\
-\hline
-\end{DoxyParams}
-
-
-Definition at line 80 of file Transformations.\-h.
-
-\hypertarget{classmeow_1_1BallProjection_a9d9d151e138e50c2bb4cd3d039fb0808}{\index{meow\-::\-Ball\-Projection@{meow\-::\-Ball\-Projection}!Ball\-Projection@{Ball\-Projection}}
-\index{Ball\-Projection@{Ball\-Projection}!meow::BallProjection@{meow\-::\-Ball\-Projection}}
-\subsubsection[{Ball\-Projection}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ {\bf meow\-::\-Ball\-Projection}$<$ Scalar $>$\-::{\bf Ball\-Projection} (
-\begin{DoxyParamCaption}
-\item[{size\-\_\-t}]{d, }
-\item[{Scalar const \&}]{r}
-\end{DoxyParamCaption}
-)\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1BallProjection_a9d9d151e138e50c2bb4cd3d039fb0808}
-Constructor and setup
-\begin{DoxyParams}[1]{Parameters}
-\mbox{\tt in} & {\em d} & Dimension of the input/output vector \\
-\hline
-\mbox{\tt in} & {\em r} & Radius of the hyper-\/sphere \\
-\hline
-\end{DoxyParams}
-
-
-Definition at line 90 of file Transformations.\-h.
-
-
-
-\subsection{Member Function Documentation}
-\hypertarget{classmeow_1_1BallProjection_aec71a15af880bdaea8042986c11e2187}{\index{meow\-::\-Ball\-Projection@{meow\-::\-Ball\-Projection}!copy\-From@{copy\-From}}
-\index{copy\-From@{copy\-From}!meow::BallProjection@{meow\-::\-Ball\-Projection}}
-\subsubsection[{copy\-From}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ {\bf Ball\-Projection}\& {\bf meow\-::\-Ball\-Projection}$<$ Scalar $>$\-::copy\-From (
-\begin{DoxyParamCaption}
-\item[{{\bf Ball\-Projection}$<$ Scalar $>$ const \&}]{b}
-\end{DoxyParamCaption}
-)\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1BallProjection_aec71a15af880bdaea8042986c11e2187}
-
-
-Copy settings from another one.
-
-
-\begin{DoxyParams}[1]{Parameters}
-\mbox{\tt in} & {\em b} & Another one \\
-\hline
-\end{DoxyParams}
-\begin{DoxyReturn}{Returns}
-{\ttfamily $\ast$this}
-\end{DoxyReturn}
-
-
-Definition at line 100 of file Transformations.\-h.
-
-\hypertarget{classmeow_1_1BallProjection_a3eff2f36a83ba683da6bc9bb82699b30}{\index{meow\-::\-Ball\-Projection@{meow\-::\-Ball\-Projection}!dimension@{dimension}}
-\index{dimension@{dimension}!meow::BallProjection@{meow\-::\-Ball\-Projection}}
-\subsubsection[{dimension}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ size\-\_\-t {\bf meow\-::\-Ball\-Projection}$<$ Scalar $>$\-::dimension (
-\begin{DoxyParamCaption}
-{}
-\end{DoxyParamCaption}
-) const\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1BallProjection_a3eff2f36a83ba683da6bc9bb82699b30}
-
-
-Get the dimension of this projection.
-
-
-
-Definition at line 152 of file Transformations.\-h.
-
-\hypertarget{classmeow_1_1BallProjection_a4fb7773f5566e93435ba56defbb7efc6}{\index{meow\-::\-Ball\-Projection@{meow\-::\-Ball\-Projection}!jacobian@{jacobian}}
-\index{jacobian@{jacobian}!meow::BallProjection@{meow\-::\-Ball\-Projection}}
-\subsubsection[{jacobian}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ {\bf Matrix}$<$Scalar$>$ {\bf meow\-::\-Ball\-Projection}$<$ Scalar $>$\-::jacobian (
-\begin{DoxyParamCaption}
-\item[{{\bf Matrix}$<$ Scalar $>$ const \&}]{x}
-\end{DoxyParamCaption}
-) const\hspace{0.3cm}{\ttfamily [inline]}, {\ttfamily [virtual]}}}\label{classmeow_1_1BallProjection_a4fb7773f5566e93435ba56defbb7efc6}
-
-
-Return the jacobian matrix (derivate by the input vector) of this projection.
-
-This method only allow a vector-\/like matrix be input. Assume\-:
-\begin{DoxyItemize}
-\item The dimension of a ball projection is $ N $
-\item The length of the input vector is $ L=\sqrt{x_1^2+x_2^2+...+x_N^2} $
-\item The radius of the hyper-\/sphere is $ R $
-\end{DoxyItemize}Then the jacobian matrix is like below\-: \par
- \[ \frac{R}{L^3} \times \left[ \begin{array}{ccccc} L^2-x_1^2 & -x_1x_2 & -x_1x_3 & ... & -x_1x_N \\ -x_2x_1 & L^2-x_2^2 & -x_2x_3 & ... & -x_2x_N \\ -x_3x_1 & -x_3x_2 & L^2-x_3^2 & ... & -x_3x_N \\ . & . & . & & . \\ . & . & . & & . \\ . & . & . & & . \\ -x_Nx_1 & -x_Nx_2 & -x_Nx_3 & ... & L^2-x_N^2 \\ \end{array} \right] \]
-
-
-\begin{DoxyParams}[1]{Parameters}
-\mbox{\tt in} & {\em x} & The input matrix. \\
-\hline
-\end{DoxyParams}
-\begin{DoxyReturn}{Returns}
-The output matrix.
-\end{DoxyReturn}
-
-
-Reimplemented from \hyperlink{classmeow_1_1Transformation_a97b459877b4e508193071fa166a126c9}{meow\-::\-Transformation$<$ Scalar $>$}.
-
-
-
-Definition at line 215 of file Transformations.\-h.
-
-\hypertarget{classmeow_1_1BallProjection_ad2d62da97dd4b527c254e62a1ec949d8}{\index{meow\-::\-Ball\-Projection@{meow\-::\-Ball\-Projection}!jacobian@{jacobian}}
-\index{jacobian@{jacobian}!meow::BallProjection@{meow\-::\-Ball\-Projection}}
-\subsubsection[{jacobian}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ {\bf Matrix}$<$Scalar$>$ {\bf meow\-::\-Ball\-Projection}$<$ Scalar $>$\-::jacobian (
-\begin{DoxyParamCaption}
-\item[{{\bf Matrix}$<$ Scalar $>$ const \&}]{x, }
-\item[{size\-\_\-t}]{i}
-\end{DoxyParamCaption}
-) const\hspace{0.3cm}{\ttfamily [inline]}, {\ttfamily [virtual]}}}\label{classmeow_1_1BallProjection_ad2d62da97dd4b527c254e62a1ec949d8}
-
-
-Return the jacobian matrix (derivate by radius) of this projection.
-
-This method only allow a vector-\/like matrix be input. Assume\-:
-\begin{DoxyItemize}
-\item The dimension of a ball projection is $ N $
-\item The length of the input vector is $ L=\sqrt{x_1^2+x_2^2+...+x_N^2} $
-\item The radius of the hyper-\/sphere is $ R $
-\end{DoxyItemize}Then the jacobian matrix is like below\-: \par
- \[ R \times \left[ \begin{array}{c} \frac{x_1}{L} \\ \frac{x_2}{L} \\ \frac{x_3}{L} \\ . \\ . \\ . \\ \frac{x_N}{L} \\ \end{array} \right] \]
-
-
-\begin{DoxyParams}[1]{Parameters}
-\mbox{\tt in} & {\em x} & The input matrix. \\
-\hline
-\mbox{\tt in} & {\em i} & Useless parameter \\
-\hline
-\end{DoxyParams}
-\begin{DoxyReturn}{Returns}
-The output matrix.
-\end{DoxyReturn}
-
-
-Reimplemented from \hyperlink{classmeow_1_1Transformation_a18590a4501b79a9ad38eb8fa3c966eb8}{meow\-::\-Transformation$<$ Scalar $>$}.
-
-
-
-Definition at line 260 of file Transformations.\-h.
-
-\hypertarget{classmeow_1_1BallProjection_a4f2e133f911088b7e13cabc52b3e6b92}{\index{meow\-::\-Ball\-Projection@{meow\-::\-Ball\-Projection}!operator()@{operator()}}
-\index{operator()@{operator()}!meow::BallProjection@{meow\-::\-Ball\-Projection}}
-\subsubsection[{operator()}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ {\bf Matrix}$<$Scalar$>$ {\bf meow\-::\-Ball\-Projection}$<$ Scalar $>$\-::operator() (
-\begin{DoxyParamCaption}
-\item[{{\bf Matrix}$<$ Scalar $>$ const \&}]{v}
-\end{DoxyParamCaption}
-) const\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1BallProjection_a4f2e133f911088b7e13cabc52b3e6b92}
-
-
-Same as {\ttfamily transformate(v)}
-
-
-
-Definition at line 279 of file Transformations.\-h.
-
-\hypertarget{classmeow_1_1BallProjection_a8e7e0ddd31c51bbaa934f77aee760f18}{\index{meow\-::\-Ball\-Projection@{meow\-::\-Ball\-Projection}!operator=@{operator=}}
-\index{operator=@{operator=}!meow::BallProjection@{meow\-::\-Ball\-Projection}}
-\subsubsection[{operator=}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ {\bf Ball\-Projection}\& {\bf meow\-::\-Ball\-Projection}$<$ Scalar $>$\-::operator= (
-\begin{DoxyParamCaption}
-\item[{{\bf Ball\-Projection}$<$ Scalar $>$ const \&}]{b}
-\end{DoxyParamCaption}
-)\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1BallProjection_a8e7e0ddd31c51bbaa934f77aee760f18}
-
-
-Same as {\ttfamily copy\-From(b)}
-
-
-
-Definition at line 272 of file Transformations.\-h.
-
-\hypertarget{classmeow_1_1BallProjection_adf2bcb2f82e9f7e2136b187317ba3211}{\index{meow\-::\-Ball\-Projection@{meow\-::\-Ball\-Projection}!parameter@{parameter}}
-\index{parameter@{parameter}!meow::BallProjection@{meow\-::\-Ball\-Projection}}
-\subsubsection[{parameter}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ Scalar {\bf meow\-::\-Ball\-Projection}$<$ Scalar $>$\-::parameter (
-\begin{DoxyParamCaption}
-\item[{size\-\_\-t}]{i}
-\end{DoxyParamCaption}
-) const\hspace{0.3cm}{\ttfamily [inline]}, {\ttfamily [virtual]}}}\label{classmeow_1_1BallProjection_adf2bcb2f82e9f7e2136b187317ba3211}
-
-
-same as {\ttfamily \hyperlink{classmeow_1_1BallProjection_a82416bac8768d0f40fc09e8cd3896bc8}{radius()}}
-
-
-
-Implements \hyperlink{classmeow_1_1Transformation_a09e71e5af508d7c0e09fdbeaacbe4365}{meow\-::\-Transformation$<$ Scalar $>$}.
-
-
-
-Definition at line 120 of file Transformations.\-h.
-
-\hypertarget{classmeow_1_1BallProjection_a288814dc861482dd70129a698b1a2d7e}{\index{meow\-::\-Ball\-Projection@{meow\-::\-Ball\-Projection}!parameter@{parameter}}
-\index{parameter@{parameter}!meow::BallProjection@{meow\-::\-Ball\-Projection}}
-\subsubsection[{parameter}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ Scalar {\bf meow\-::\-Ball\-Projection}$<$ Scalar $>$\-::parameter (
-\begin{DoxyParamCaption}
-\item[{size\-\_\-t}]{i, }
-\item[{Scalar const \&}]{s}
-\end{DoxyParamCaption}
-)\hspace{0.3cm}{\ttfamily [inline]}, {\ttfamily [virtual]}}}\label{classmeow_1_1BallProjection_a288814dc861482dd70129a698b1a2d7e}
-
-
-same as {\ttfamily radius(s)}
-
-
-
-Implements \hyperlink{classmeow_1_1Transformation_a2a90b93490712232b81a628b5057526f}{meow\-::\-Transformation$<$ Scalar $>$}.
-
-
-
-Definition at line 127 of file Transformations.\-h.
-
-\hypertarget{classmeow_1_1BallProjection_a82416bac8768d0f40fc09e8cd3896bc8}{\index{meow\-::\-Ball\-Projection@{meow\-::\-Ball\-Projection}!radius@{radius}}
-\index{radius@{radius}!meow::BallProjection@{meow\-::\-Ball\-Projection}}
-\subsubsection[{radius}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ Scalar {\bf meow\-::\-Ball\-Projection}$<$ Scalar $>$\-::radius (
-\begin{DoxyParamCaption}
-{}
-\end{DoxyParamCaption}
-) const\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1BallProjection_a82416bac8768d0f40fc09e8cd3896bc8}
-
-
-Return the value of the radius.
-
-
-
-Definition at line 134 of file Transformations.\-h.
-
-\hypertarget{classmeow_1_1BallProjection_a5e4bbc9cf477002fab2dad6f37e2553c}{\index{meow\-::\-Ball\-Projection@{meow\-::\-Ball\-Projection}!radius@{radius}}
-\index{radius@{radius}!meow::BallProjection@{meow\-::\-Ball\-Projection}}
-\subsubsection[{radius}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ Scalar {\bf meow\-::\-Ball\-Projection}$<$ Scalar $>$\-::radius (
-\begin{DoxyParamCaption}
-\item[{Scalar const \&}]{r}
-\end{DoxyParamCaption}
-)\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1BallProjection_a5e4bbc9cf477002fab2dad6f37e2553c}
-
-
-Setup the radius.
-
-
-\begin{DoxyParams}[1]{Parameters}
-\mbox{\tt in} & {\em r} & New value of the radius \\
-\hline
-\end{DoxyParams}
-\begin{DoxyReturn}{Returns}
-New radius
-\end{DoxyReturn}
-
-
-Definition at line 144 of file Transformations.\-h.
-
-\hypertarget{classmeow_1_1BallProjection_adaf8d494c1177664f49bb63a5d2f36b0}{\index{meow\-::\-Ball\-Projection@{meow\-::\-Ball\-Projection}!reference\-From@{reference\-From}}
-\index{reference\-From@{reference\-From}!meow::BallProjection@{meow\-::\-Ball\-Projection}}
-\subsubsection[{reference\-From}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ {\bf Ball\-Projection}\& {\bf meow\-::\-Ball\-Projection}$<$ Scalar $>$\-::reference\-From (
-\begin{DoxyParamCaption}
-\item[{{\bf Ball\-Projection}$<$ Scalar $>$ const \&}]{b}
-\end{DoxyParamCaption}
-)\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1BallProjection_adaf8d494c1177664f49bb63a5d2f36b0}
-
-
-Reference settings from another one.
-
-
-\begin{DoxyParams}[1]{Parameters}
-\mbox{\tt in} & {\em b} & Another one \\
-\hline
-\end{DoxyParams}
-\begin{DoxyReturn}{Returns}
-{\ttfamily $\ast$this}
-\end{DoxyReturn}
-
-
-Definition at line 111 of file Transformations.\-h.
-
-\hypertarget{classmeow_1_1BallProjection_a2573c364dd1e0d7de32b1e2afc0bb1b5}{\index{meow\-::\-Ball\-Projection@{meow\-::\-Ball\-Projection}!transformate@{transformate}}
-\index{transformate@{transformate}!meow::BallProjection@{meow\-::\-Ball\-Projection}}
-\subsubsection[{transformate}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar$>$ {\bf Matrix}$<$Scalar$>$ {\bf meow\-::\-Ball\-Projection}$<$ Scalar $>$\-::transformate (
-\begin{DoxyParamCaption}
-\item[{{\bf Matrix}$<$ Scalar $>$ const \&}]{x}
-\end{DoxyParamCaption}
-) const\hspace{0.3cm}{\ttfamily [inline]}, {\ttfamily [virtual]}}}\label{classmeow_1_1BallProjection_a2573c364dd1e0d7de32b1e2afc0bb1b5}
-
-
-Project the input vector(s) onto the hyper-\/sphere and return it.
-
-If the number of columns of the input matrix is larger than 1, this method will think that you want to transform multiple vector once and the number of columns of the output matrix will be the same of the number of columns of the input one.
-
-
-\begin{DoxyParams}[1]{Parameters}
-\mbox{\tt in} & {\em x} & The input matrix. \\
-\hline
-\end{DoxyParams}
-\begin{DoxyReturn}{Returns}
-The output matrix.
-\end{DoxyReturn}
-\begin{DoxyNote}{Note}
-Take into account that too much safty checking will lead to inefficient, this method will not checking whether the dimension of the input vector/matrix is right. So be sure the data is valid before you call this method.
-\end{DoxyNote}
-
-
-Implements \hyperlink{classmeow_1_1Transformation_aa0c299b9ad13020a9eb460de01378ddc}{meow\-::\-Transformation$<$ Scalar $>$}.
-
-
-
-Definition at line 172 of file Transformations.\-h.
-
-
-
-The documentation for this class was generated from the following file\-:\begin{DoxyCompactItemize}
-\item
-meowpp/math/\hyperlink{Transformations_8h}{Transformations.\-h}\end{DoxyCompactItemize}