diff options
author | Felix Lange <fjl@users.noreply.github.com> | 2017-01-13 04:29:11 +0800 |
---|---|---|
committer | GitHub <noreply@github.com> | 2017-01-13 04:29:11 +0800 |
commit | e0ceeab0d111ada7d847c83992d2ff3128bfb959 (patch) | |
tree | be9fcaa85d61ba461a3ee2293206f5f73c7e5451 /crypto/secp256k1/libsecp256k1/sage/weierstrass_prover.sage | |
parent | 93077c98e43610122ad0933b20a44f04a8f4b6b2 (diff) | |
download | go-tangerine-e0ceeab0d111ada7d847c83992d2ff3128bfb959.tar.gz go-tangerine-e0ceeab0d111ada7d847c83992d2ff3128bfb959.tar.zst go-tangerine-e0ceeab0d111ada7d847c83992d2ff3128bfb959.zip |
crypto/secp256k1: update to github.com/bitcoin-core/secp256k1 @ 9d560f9 (#3544)
- Use defined constants instead of hard-coding their integer value.
- Allocate secp256k1 structs on the C stack instead of converting []byte
- Remove dead code
Diffstat (limited to 'crypto/secp256k1/libsecp256k1/sage/weierstrass_prover.sage')
-rw-r--r-- | crypto/secp256k1/libsecp256k1/sage/weierstrass_prover.sage | 264 |
1 files changed, 264 insertions, 0 deletions
diff --git a/crypto/secp256k1/libsecp256k1/sage/weierstrass_prover.sage b/crypto/secp256k1/libsecp256k1/sage/weierstrass_prover.sage new file mode 100644 index 000000000..03ef2ec90 --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/sage/weierstrass_prover.sage @@ -0,0 +1,264 @@ +# Prover implementation for Weierstrass curves of the form +# y^2 = x^3 + A * x + B, specifically with a = 0 and b = 7, with group laws +# operating on affine and Jacobian coordinates, including the point at infinity +# represented by a 4th variable in coordinates. + +load("group_prover.sage") + + +class affinepoint: + def __init__(self, x, y, infinity=0): + self.x = x + self.y = y + self.infinity = infinity + def __str__(self): + return "affinepoint(x=%s,y=%s,inf=%s)" % (self.x, self.y, self.infinity) + + +class jacobianpoint: + def __init__(self, x, y, z, infinity=0): + self.X = x + self.Y = y + self.Z = z + self.Infinity = infinity + def __str__(self): + return "jacobianpoint(X=%s,Y=%s,Z=%s,inf=%s)" % (self.X, self.Y, self.Z, self.Infinity) + + +def point_at_infinity(): + return jacobianpoint(1, 1, 1, 1) + + +def negate(p): + if p.__class__ == affinepoint: + return affinepoint(p.x, -p.y) + if p.__class__ == jacobianpoint: + return jacobianpoint(p.X, -p.Y, p.Z) + assert(False) + + +def on_weierstrass_curve(A, B, p): + """Return a set of zero-expressions for an affine point to be on the curve""" + return constraints(zero={p.x^3 + A*p.x + B - p.y^2: 'on_curve'}) + + +def tangential_to_weierstrass_curve(A, B, p12, p3): + """Return a set of zero-expressions for ((x12,y12),(x3,y3)) to be a line that is tangential to the curve at (x12,y12)""" + return constraints(zero={ + (p12.y - p3.y) * (p12.y * 2) - (p12.x^2 * 3 + A) * (p12.x - p3.x): 'tangential_to_curve' + }) + + +def colinear(p1, p2, p3): + """Return a set of zero-expressions for ((x1,y1),(x2,y2),(x3,y3)) to be collinear""" + return constraints(zero={ + (p1.y - p2.y) * (p1.x - p3.x) - (p1.y - p3.y) * (p1.x - p2.x): 'colinear_1', + (p2.y - p3.y) * (p2.x - p1.x) - (p2.y - p1.y) * (p2.x - p3.x): 'colinear_2', + (p3.y - p1.y) * (p3.x - p2.x) - (p3.y - p2.y) * (p3.x - p1.x): 'colinear_3' + }) + + +def good_affine_point(p): + return constraints(nonzero={p.x : 'nonzero_x', p.y : 'nonzero_y'}) + + +def good_jacobian_point(p): + return constraints(nonzero={p.X : 'nonzero_X', p.Y : 'nonzero_Y', p.Z^6 : 'nonzero_Z'}) + + +def good_point(p): + return constraints(nonzero={p.Z^6 : 'nonzero_X'}) + + +def finite(p, *affine_fns): + con = good_point(p) + constraints(zero={p.Infinity : 'finite_point'}) + if p.Z != 0: + return con + reduce(lambda a, b: a + b, (f(affinepoint(p.X / p.Z^2, p.Y / p.Z^3)) for f in affine_fns), con) + else: + return con + +def infinite(p): + return constraints(nonzero={p.Infinity : 'infinite_point'}) + + +def law_jacobian_weierstrass_add(A, B, pa, pb, pA, pB, pC): + """Check whether the passed set of coordinates is a valid Jacobian add, given assumptions""" + assumeLaw = (good_affine_point(pa) + + good_affine_point(pb) + + good_jacobian_point(pA) + + good_jacobian_point(pB) + + on_weierstrass_curve(A, B, pa) + + on_weierstrass_curve(A, B, pb) + + finite(pA) + + finite(pB) + + constraints(nonzero={pa.x - pb.x : 'different_x'})) + require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) + + colinear(pa, pb, negate(pc)))) + return (assumeLaw, require) + + +def law_jacobian_weierstrass_double(A, B, pa, pb, pA, pB, pC): + """Check whether the passed set of coordinates is a valid Jacobian doubling, given assumptions""" + assumeLaw = (good_affine_point(pa) + + good_affine_point(pb) + + good_jacobian_point(pA) + + good_jacobian_point(pB) + + on_weierstrass_curve(A, B, pa) + + on_weierstrass_curve(A, B, pb) + + finite(pA) + + finite(pB) + + constraints(zero={pa.x - pb.x : 'equal_x', pa.y - pb.y : 'equal_y'})) + require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) + + tangential_to_weierstrass_curve(A, B, pa, negate(pc)))) + return (assumeLaw, require) + + +def law_jacobian_weierstrass_add_opposites(A, B, pa, pb, pA, pB, pC): + assumeLaw = (good_affine_point(pa) + + good_affine_point(pb) + + good_jacobian_point(pA) + + good_jacobian_point(pB) + + on_weierstrass_curve(A, B, pa) + + on_weierstrass_curve(A, B, pb) + + finite(pA) + + finite(pB) + + constraints(zero={pa.x - pb.x : 'equal_x', pa.y + pb.y : 'opposite_y'})) + require = infinite(pC) + return (assumeLaw, require) + + +def law_jacobian_weierstrass_add_infinite_a(A, B, pa, pb, pA, pB, pC): + assumeLaw = (good_affine_point(pa) + + good_affine_point(pb) + + good_jacobian_point(pA) + + good_jacobian_point(pB) + + on_weierstrass_curve(A, B, pb) + + infinite(pA) + + finite(pB)) + require = finite(pC, lambda pc: constraints(zero={pc.x - pb.x : 'c.x=b.x', pc.y - pb.y : 'c.y=b.y'})) + return (assumeLaw, require) + + +def law_jacobian_weierstrass_add_infinite_b(A, B, pa, pb, pA, pB, pC): + assumeLaw = (good_affine_point(pa) + + good_affine_point(pb) + + good_jacobian_point(pA) + + good_jacobian_point(pB) + + on_weierstrass_curve(A, B, pa) + + infinite(pB) + + finite(pA)) + require = finite(pC, lambda pc: constraints(zero={pc.x - pa.x : 'c.x=a.x', pc.y - pa.y : 'c.y=a.y'})) + return (assumeLaw, require) + + +def law_jacobian_weierstrass_add_infinite_ab(A, B, pa, pb, pA, pB, pC): + assumeLaw = (good_affine_point(pa) + + good_affine_point(pb) + + good_jacobian_point(pA) + + good_jacobian_point(pB) + + infinite(pA) + + infinite(pB)) + require = infinite(pC) + return (assumeLaw, require) + + +laws_jacobian_weierstrass = { + 'add': law_jacobian_weierstrass_add, + 'double': law_jacobian_weierstrass_double, + 'add_opposite': law_jacobian_weierstrass_add_opposites, + 'add_infinite_a': law_jacobian_weierstrass_add_infinite_a, + 'add_infinite_b': law_jacobian_weierstrass_add_infinite_b, + 'add_infinite_ab': law_jacobian_weierstrass_add_infinite_ab +} + + +def check_exhaustive_jacobian_weierstrass(name, A, B, branches, formula, p): + """Verify an implementation of addition of Jacobian points on a Weierstrass curve, by executing and validating the result for every possible addition in a prime field""" + F = Integers(p) + print "Formula %s on Z%i:" % (name, p) + points = [] + for x in xrange(0, p): + for y in xrange(0, p): + point = affinepoint(F(x), F(y)) + r, e = concrete_verify(on_weierstrass_curve(A, B, point)) + if r: + points.append(point) + + for za in xrange(1, p): + for zb in xrange(1, p): + for pa in points: + for pb in points: + for ia in xrange(2): + for ib in xrange(2): + pA = jacobianpoint(pa.x * F(za)^2, pa.y * F(za)^3, F(za), ia) + pB = jacobianpoint(pb.x * F(zb)^2, pb.y * F(zb)^3, F(zb), ib) + for branch in xrange(0, branches): + assumeAssert, assumeBranch, pC = formula(branch, pA, pB) + pC.X = F(pC.X) + pC.Y = F(pC.Y) + pC.Z = F(pC.Z) + pC.Infinity = F(pC.Infinity) + r, e = concrete_verify(assumeAssert + assumeBranch) + if r: + match = False + for key in laws_jacobian_weierstrass: + assumeLaw, require = laws_jacobian_weierstrass[key](A, B, pa, pb, pA, pB, pC) + r, e = concrete_verify(assumeLaw) + if r: + if match: + print " multiple branches for (%s,%s,%s,%s) + (%s,%s,%s,%s)" % (pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity) + else: + match = True + r, e = concrete_verify(require) + if not r: + print " failure in branch %i for (%s,%s,%s,%s) + (%s,%s,%s,%s) = (%s,%s,%s,%s): %s" % (branch, pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity, pC.X, pC.Y, pC.Z, pC.Infinity, e) + print + + +def check_symbolic_function(R, assumeAssert, assumeBranch, f, A, B, pa, pb, pA, pB, pC): + assumeLaw, require = f(A, B, pa, pb, pA, pB, pC) + return check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require) + +def check_symbolic_jacobian_weierstrass(name, A, B, branches, formula): + """Verify an implementation of addition of Jacobian points on a Weierstrass curve symbolically""" + R.<ax,bx,ay,by,Az,Bz,Ai,Bi> = PolynomialRing(QQ,8,order='invlex') + lift = lambda x: fastfrac(R,x) + ax = lift(ax) + ay = lift(ay) + Az = lift(Az) + bx = lift(bx) + by = lift(by) + Bz = lift(Bz) + Ai = lift(Ai) + Bi = lift(Bi) + + pa = affinepoint(ax, ay, Ai) + pb = affinepoint(bx, by, Bi) + pA = jacobianpoint(ax * Az^2, ay * Az^3, Az, Ai) + pB = jacobianpoint(bx * Bz^2, by * Bz^3, Bz, Bi) + + res = {} + + for key in laws_jacobian_weierstrass: + res[key] = [] + + print ("Formula " + name + ":") + count = 0 + for branch in xrange(branches): + assumeFormula, assumeBranch, pC = formula(branch, pA, pB) + pC.X = lift(pC.X) + pC.Y = lift(pC.Y) + pC.Z = lift(pC.Z) + pC.Infinity = lift(pC.Infinity) + + for key in laws_jacobian_weierstrass: + res[key].append((check_symbolic_function(R, assumeFormula, assumeBranch, laws_jacobian_weierstrass[key], A, B, pa, pb, pA, pB, pC), branch)) + + for key in res: + print " %s:" % key + val = res[key] + for x in val: + if x[0] is not None: + print " branch %i: %s" % (x[1], x[0]) + + print |