aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/secp256k1/libsecp256k1/sage/weierstrass_prover.sage
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/secp256k1/libsecp256k1/sage/weierstrass_prover.sage')
-rw-r--r--crypto/secp256k1/libsecp256k1/sage/weierstrass_prover.sage264
1 files changed, 264 insertions, 0 deletions
diff --git a/crypto/secp256k1/libsecp256k1/sage/weierstrass_prover.sage b/crypto/secp256k1/libsecp256k1/sage/weierstrass_prover.sage
new file mode 100644
index 000000000..03ef2ec90
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/sage/weierstrass_prover.sage
@@ -0,0 +1,264 @@
+# Prover implementation for Weierstrass curves of the form
+# y^2 = x^3 + A * x + B, specifically with a = 0 and b = 7, with group laws
+# operating on affine and Jacobian coordinates, including the point at infinity
+# represented by a 4th variable in coordinates.
+
+load("group_prover.sage")
+
+
+class affinepoint:
+ def __init__(self, x, y, infinity=0):
+ self.x = x
+ self.y = y
+ self.infinity = infinity
+ def __str__(self):
+ return "affinepoint(x=%s,y=%s,inf=%s)" % (self.x, self.y, self.infinity)
+
+
+class jacobianpoint:
+ def __init__(self, x, y, z, infinity=0):
+ self.X = x
+ self.Y = y
+ self.Z = z
+ self.Infinity = infinity
+ def __str__(self):
+ return "jacobianpoint(X=%s,Y=%s,Z=%s,inf=%s)" % (self.X, self.Y, self.Z, self.Infinity)
+
+
+def point_at_infinity():
+ return jacobianpoint(1, 1, 1, 1)
+
+
+def negate(p):
+ if p.__class__ == affinepoint:
+ return affinepoint(p.x, -p.y)
+ if p.__class__ == jacobianpoint:
+ return jacobianpoint(p.X, -p.Y, p.Z)
+ assert(False)
+
+
+def on_weierstrass_curve(A, B, p):
+ """Return a set of zero-expressions for an affine point to be on the curve"""
+ return constraints(zero={p.x^3 + A*p.x + B - p.y^2: 'on_curve'})
+
+
+def tangential_to_weierstrass_curve(A, B, p12, p3):
+ """Return a set of zero-expressions for ((x12,y12),(x3,y3)) to be a line that is tangential to the curve at (x12,y12)"""
+ return constraints(zero={
+ (p12.y - p3.y) * (p12.y * 2) - (p12.x^2 * 3 + A) * (p12.x - p3.x): 'tangential_to_curve'
+ })
+
+
+def colinear(p1, p2, p3):
+ """Return a set of zero-expressions for ((x1,y1),(x2,y2),(x3,y3)) to be collinear"""
+ return constraints(zero={
+ (p1.y - p2.y) * (p1.x - p3.x) - (p1.y - p3.y) * (p1.x - p2.x): 'colinear_1',
+ (p2.y - p3.y) * (p2.x - p1.x) - (p2.y - p1.y) * (p2.x - p3.x): 'colinear_2',
+ (p3.y - p1.y) * (p3.x - p2.x) - (p3.y - p2.y) * (p3.x - p1.x): 'colinear_3'
+ })
+
+
+def good_affine_point(p):
+ return constraints(nonzero={p.x : 'nonzero_x', p.y : 'nonzero_y'})
+
+
+def good_jacobian_point(p):
+ return constraints(nonzero={p.X : 'nonzero_X', p.Y : 'nonzero_Y', p.Z^6 : 'nonzero_Z'})
+
+
+def good_point(p):
+ return constraints(nonzero={p.Z^6 : 'nonzero_X'})
+
+
+def finite(p, *affine_fns):
+ con = good_point(p) + constraints(zero={p.Infinity : 'finite_point'})
+ if p.Z != 0:
+ return con + reduce(lambda a, b: a + b, (f(affinepoint(p.X / p.Z^2, p.Y / p.Z^3)) for f in affine_fns), con)
+ else:
+ return con
+
+def infinite(p):
+ return constraints(nonzero={p.Infinity : 'infinite_point'})
+
+
+def law_jacobian_weierstrass_add(A, B, pa, pb, pA, pB, pC):
+ """Check whether the passed set of coordinates is a valid Jacobian add, given assumptions"""
+ assumeLaw = (good_affine_point(pa) +
+ good_affine_point(pb) +
+ good_jacobian_point(pA) +
+ good_jacobian_point(pB) +
+ on_weierstrass_curve(A, B, pa) +
+ on_weierstrass_curve(A, B, pb) +
+ finite(pA) +
+ finite(pB) +
+ constraints(nonzero={pa.x - pb.x : 'different_x'}))
+ require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) +
+ colinear(pa, pb, negate(pc))))
+ return (assumeLaw, require)
+
+
+def law_jacobian_weierstrass_double(A, B, pa, pb, pA, pB, pC):
+ """Check whether the passed set of coordinates is a valid Jacobian doubling, given assumptions"""
+ assumeLaw = (good_affine_point(pa) +
+ good_affine_point(pb) +
+ good_jacobian_point(pA) +
+ good_jacobian_point(pB) +
+ on_weierstrass_curve(A, B, pa) +
+ on_weierstrass_curve(A, B, pb) +
+ finite(pA) +
+ finite(pB) +
+ constraints(zero={pa.x - pb.x : 'equal_x', pa.y - pb.y : 'equal_y'}))
+ require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) +
+ tangential_to_weierstrass_curve(A, B, pa, negate(pc))))
+ return (assumeLaw, require)
+
+
+def law_jacobian_weierstrass_add_opposites(A, B, pa, pb, pA, pB, pC):
+ assumeLaw = (good_affine_point(pa) +
+ good_affine_point(pb) +
+ good_jacobian_point(pA) +
+ good_jacobian_point(pB) +
+ on_weierstrass_curve(A, B, pa) +
+ on_weierstrass_curve(A, B, pb) +
+ finite(pA) +
+ finite(pB) +
+ constraints(zero={pa.x - pb.x : 'equal_x', pa.y + pb.y : 'opposite_y'}))
+ require = infinite(pC)
+ return (assumeLaw, require)
+
+
+def law_jacobian_weierstrass_add_infinite_a(A, B, pa, pb, pA, pB, pC):
+ assumeLaw = (good_affine_point(pa) +
+ good_affine_point(pb) +
+ good_jacobian_point(pA) +
+ good_jacobian_point(pB) +
+ on_weierstrass_curve(A, B, pb) +
+ infinite(pA) +
+ finite(pB))
+ require = finite(pC, lambda pc: constraints(zero={pc.x - pb.x : 'c.x=b.x', pc.y - pb.y : 'c.y=b.y'}))
+ return (assumeLaw, require)
+
+
+def law_jacobian_weierstrass_add_infinite_b(A, B, pa, pb, pA, pB, pC):
+ assumeLaw = (good_affine_point(pa) +
+ good_affine_point(pb) +
+ good_jacobian_point(pA) +
+ good_jacobian_point(pB) +
+ on_weierstrass_curve(A, B, pa) +
+ infinite(pB) +
+ finite(pA))
+ require = finite(pC, lambda pc: constraints(zero={pc.x - pa.x : 'c.x=a.x', pc.y - pa.y : 'c.y=a.y'}))
+ return (assumeLaw, require)
+
+
+def law_jacobian_weierstrass_add_infinite_ab(A, B, pa, pb, pA, pB, pC):
+ assumeLaw = (good_affine_point(pa) +
+ good_affine_point(pb) +
+ good_jacobian_point(pA) +
+ good_jacobian_point(pB) +
+ infinite(pA) +
+ infinite(pB))
+ require = infinite(pC)
+ return (assumeLaw, require)
+
+
+laws_jacobian_weierstrass = {
+ 'add': law_jacobian_weierstrass_add,
+ 'double': law_jacobian_weierstrass_double,
+ 'add_opposite': law_jacobian_weierstrass_add_opposites,
+ 'add_infinite_a': law_jacobian_weierstrass_add_infinite_a,
+ 'add_infinite_b': law_jacobian_weierstrass_add_infinite_b,
+ 'add_infinite_ab': law_jacobian_weierstrass_add_infinite_ab
+}
+
+
+def check_exhaustive_jacobian_weierstrass(name, A, B, branches, formula, p):
+ """Verify an implementation of addition of Jacobian points on a Weierstrass curve, by executing and validating the result for every possible addition in a prime field"""
+ F = Integers(p)
+ print "Formula %s on Z%i:" % (name, p)
+ points = []
+ for x in xrange(0, p):
+ for y in xrange(0, p):
+ point = affinepoint(F(x), F(y))
+ r, e = concrete_verify(on_weierstrass_curve(A, B, point))
+ if r:
+ points.append(point)
+
+ for za in xrange(1, p):
+ for zb in xrange(1, p):
+ for pa in points:
+ for pb in points:
+ for ia in xrange(2):
+ for ib in xrange(2):
+ pA = jacobianpoint(pa.x * F(za)^2, pa.y * F(za)^3, F(za), ia)
+ pB = jacobianpoint(pb.x * F(zb)^2, pb.y * F(zb)^3, F(zb), ib)
+ for branch in xrange(0, branches):
+ assumeAssert, assumeBranch, pC = formula(branch, pA, pB)
+ pC.X = F(pC.X)
+ pC.Y = F(pC.Y)
+ pC.Z = F(pC.Z)
+ pC.Infinity = F(pC.Infinity)
+ r, e = concrete_verify(assumeAssert + assumeBranch)
+ if r:
+ match = False
+ for key in laws_jacobian_weierstrass:
+ assumeLaw, require = laws_jacobian_weierstrass[key](A, B, pa, pb, pA, pB, pC)
+ r, e = concrete_verify(assumeLaw)
+ if r:
+ if match:
+ print " multiple branches for (%s,%s,%s,%s) + (%s,%s,%s,%s)" % (pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity)
+ else:
+ match = True
+ r, e = concrete_verify(require)
+ if not r:
+ print " failure in branch %i for (%s,%s,%s,%s) + (%s,%s,%s,%s) = (%s,%s,%s,%s): %s" % (branch, pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity, pC.X, pC.Y, pC.Z, pC.Infinity, e)
+ print
+
+
+def check_symbolic_function(R, assumeAssert, assumeBranch, f, A, B, pa, pb, pA, pB, pC):
+ assumeLaw, require = f(A, B, pa, pb, pA, pB, pC)
+ return check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require)
+
+def check_symbolic_jacobian_weierstrass(name, A, B, branches, formula):
+ """Verify an implementation of addition of Jacobian points on a Weierstrass curve symbolically"""
+ R.<ax,bx,ay,by,Az,Bz,Ai,Bi> = PolynomialRing(QQ,8,order='invlex')
+ lift = lambda x: fastfrac(R,x)
+ ax = lift(ax)
+ ay = lift(ay)
+ Az = lift(Az)
+ bx = lift(bx)
+ by = lift(by)
+ Bz = lift(Bz)
+ Ai = lift(Ai)
+ Bi = lift(Bi)
+
+ pa = affinepoint(ax, ay, Ai)
+ pb = affinepoint(bx, by, Bi)
+ pA = jacobianpoint(ax * Az^2, ay * Az^3, Az, Ai)
+ pB = jacobianpoint(bx * Bz^2, by * Bz^3, Bz, Bi)
+
+ res = {}
+
+ for key in laws_jacobian_weierstrass:
+ res[key] = []
+
+ print ("Formula " + name + ":")
+ count = 0
+ for branch in xrange(branches):
+ assumeFormula, assumeBranch, pC = formula(branch, pA, pB)
+ pC.X = lift(pC.X)
+ pC.Y = lift(pC.Y)
+ pC.Z = lift(pC.Z)
+ pC.Infinity = lift(pC.Infinity)
+
+ for key in laws_jacobian_weierstrass:
+ res[key].append((check_symbolic_function(R, assumeFormula, assumeBranch, laws_jacobian_weierstrass[key], A, B, pa, pb, pA, pB, pC), branch))
+
+ for key in res:
+ print " %s:" % key
+ val = res[key]
+ for x in val:
+ if x[0] is not None:
+ print " branch %i: %s" % (x[1], x[0])
+
+ print